Updated tracking to support multi-lemon tracking
- Improved tracking logic to handle multiple lemons simultaneously - Added necessary YAML configuration for BoT-SORT Higher Sensitivity to Minor Defects: - Weighted “DefectiveLemon” more heavily - Extended HISTORY_LENGTH for improved tracking stability
This commit is contained in:
parent
ffb7a6300a
commit
061d049bdf
|
@ -0,0 +1,125 @@
|
|||
import cv2
|
||||
from ultralytics import YOLO
|
||||
from collections import deque
|
||||
import os
|
||||
|
||||
# Allow duplicate loading of OpenMP runtime
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
||||
|
||||
# Define the official YAML configuration file path (adjust as needed)
|
||||
yaml_path = "botsort.yaml"
|
||||
|
||||
# Camera index (default camera index, 1 indicates an external camera)
|
||||
camera_index = 1
|
||||
|
||||
# Load the YOLO model
|
||||
model = YOLO(r"D:\AIM\lemon\runs\detect\train4\weights\best.pt") # Load custom model
|
||||
|
||||
# Define class labels
|
||||
class_labels = {
|
||||
0: "Bruised",
|
||||
1: "DefectiveLemon",
|
||||
2: "GoodLemon",
|
||||
3: "NotRipeLemon",
|
||||
4: "Rotten"
|
||||
}
|
||||
|
||||
# Apply smoothing to "DefectiveLemon", "GoodLemon", and "NotRipeLemon"
|
||||
smoothing_labels = ["DefectiveLemon", "GoodLemon", "NotRipeLemon"]
|
||||
|
||||
# Smoothing parameters for sliding window
|
||||
HISTORY_LENGTH = 20 # Number of recent frames
|
||||
DEFECT_THRESHOLD = 0.3 # Threshold for "DefectiveLemon" proportion
|
||||
GOOD_THRESHOLD = 0.7 # Threshold for "GoodLemon" and "NotRipeLemon" proportion
|
||||
|
||||
# State history for each target (used for smoothing), format: {ID: deque([...], maxlen=HISTORY_LENGTH)}
|
||||
lemon_history = {}
|
||||
|
||||
# Set the display window to be resizable
|
||||
cv2.namedWindow("Live Detection", cv2.WINDOW_NORMAL)
|
||||
|
||||
# Smoothing function:
|
||||
# If the current detected label is not in smoothing_labels, clear the target's history and return the current label;
|
||||
# Otherwise, add the current label to the history and return a smoothed label based on the proportion.
|
||||
def get_smoothed_label(obj_id, current_label):
|
||||
if current_label not in smoothing_labels:
|
||||
if obj_id in lemon_history:
|
||||
lemon_history[obj_id].clear()
|
||||
return current_label
|
||||
|
||||
if obj_id not in lemon_history:
|
||||
lemon_history[obj_id] = deque(maxlen=HISTORY_LENGTH)
|
||||
lemon_history[obj_id].append(current_label)
|
||||
|
||||
history = lemon_history[obj_id]
|
||||
defect_count = history.count("DefectiveLemon")
|
||||
good_count = history.count("GoodLemon")
|
||||
notripe_count = history.count("NotRipeLemon")
|
||||
total = len(history)
|
||||
|
||||
if total == 0:
|
||||
return current_label
|
||||
if defect_count / total >= DEFECT_THRESHOLD:
|
||||
return "DefectiveLemon"
|
||||
elif good_count / total >= GOOD_THRESHOLD:
|
||||
return "GoodLemon"
|
||||
elif notripe_count / total >= GOOD_THRESHOLD:
|
||||
return "NotRipeLemon"
|
||||
else:
|
||||
return history[-1]
|
||||
|
||||
# Use streaming tracking mode to maintain tracker state
|
||||
results = model.track(
|
||||
source=camera_index, # Get video stream directly from the camera
|
||||
conf=0.5,
|
||||
tracker=yaml_path, # Use the YAML configuration file
|
||||
persist=True, # Persist tracking (do not reset)
|
||||
stream=True, # Stream processing, not frame-by-frame calling
|
||||
show=False
|
||||
)
|
||||
|
||||
# Iterate over streaming tracking results
|
||||
for result in results:
|
||||
frame = result.orig_img # Current frame
|
||||
detections = result.boxes # Detection box information
|
||||
|
||||
for box in detections:
|
||||
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Detection box coordinates
|
||||
obj_id = int(box.id) if box.id is not None else -1 # Tracking ID
|
||||
class_id = int(box.cls) # Class ID
|
||||
score = box.conf # Confidence
|
||||
label = class_labels.get(class_id, "Unknown") # Get class name
|
||||
|
||||
# If target ID is valid
|
||||
if obj_id != -1:
|
||||
# If the detected label requires smoothing, use the smoothing function
|
||||
if label in smoothing_labels:
|
||||
final_label = get_smoothed_label(obj_id, label)
|
||||
display_text = f"ID {obj_id} | {final_label}"
|
||||
# Only print for targets with smoothed labels (only care about these three classes)
|
||||
if final_label in smoothing_labels:
|
||||
position = f"({x1}, {y1}, {x2}, {y2})"
|
||||
print(f"ID: {obj_id}, Position: {position}, Label: {display_text}")
|
||||
else:
|
||||
# For other classes, display the current detection result directly and clear history (if exists)
|
||||
if obj_id in lemon_history:
|
||||
lemon_history[obj_id].clear()
|
||||
display_text = label
|
||||
else:
|
||||
display_text = label
|
||||
|
||||
# Draw detection box and label
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, display_text, (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
||||
|
||||
# Display the processed frame
|
||||
cv2.imshow("Live Detection", frame)
|
||||
|
||||
# Exit program when ESC key is pressed
|
||||
if cv2.waitKey(1) & 0xFF == 27:
|
||||
print("ESC key detected. Exiting the program.")
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
print("Camera video processing complete. Program terminated.")
|
|
@ -0,0 +1,21 @@
|
|||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Default Ultralytics settings for BoT-SORT tracker when using mode="track"
|
||||
# For documentation and examples see https://docs.ultralytics.com/modes/track/
|
||||
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
|
||||
|
||||
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
|
||||
track_high_thresh: 0.25 # threshold for the first association
|
||||
track_low_thresh: 0.1 # threshold for the second association
|
||||
new_track_thresh: 0.4 # threshold for init new track if the detection does not match any tracks
|
||||
track_buffer: 30 # buffer to calculate the time when to remove tracks
|
||||
match_thresh: 0.7 # threshold for matching tracks
|
||||
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
|
||||
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
|
||||
|
||||
# BoT-SORT settings
|
||||
gmc_method: sparseOptFlow # method of global motion compensation
|
||||
# ReID model related thresh (not supported yet)
|
||||
proximity_thresh: 0.5
|
||||
appearance_thresh: 0.25
|
||||
with_reid: False
|
Loading…
Reference in New Issue