import os import pandas as pd from ultralytics import YOLO import cv2 video_path = r'D:\AIM\lemon\test.mp4' video_path_out = r'D:\AIM\lemon\test_out.mp4' cap = cv2.VideoCapture(video_path) ret, frame = cap.read() H, W, _ = frame.shape out = cv2.VideoWriter(video_path_out, cv2.VideoWriter_fourcc(*'MP4V'), int(cap.get(cv2.CAP_PROP_FPS)), (W, H)) model_path = os.path.join('.', 'runs', 'detect', 'train', 'weights', 'last.pt') # Load a model model = YOLO(r"D:\AIM\lemon\YOLO-Training\YOLOv11_finetune\weights\best.pt") # load a custom model threshold = 0.5 classifications = [] while ret: results = model(frame)[0] for result in results.boxes.data.tolist(): x1, y1, x2, y2, score, class_id = result if score > threshold: cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4) cv2.putText(frame, results.names[int(class_id)].upper(), (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA) # percentage = # if results.names[int(class_id)] in classifications: # else: classifications.append(results.names[int(class_id)]) out.write(frame) ret, frame = cap.read() # Create a new DataFrame from the classifications new_df = pd.DataFrame(classifications) # Write the new DataFrame to an Excel file new_df.to_excel('output_classifications.xlsx', index=False) cap.release() out.release() cv2.destroyAllWindows()