USDA-throughput-control/Count.py

45 lines
1.4 KiB
Python

import cv2
import numpy as np
from ultralytics import YOLO
import cvzone
device = 'cuda'
# Load the YOLO11 model
model = YOLO("yolo11m-pecan.pt")
# Open the video file (use video file or webcam, here using webcam)
cap = cv2.VideoCapture(0)
cy1=550
offset=30
idDict={}
pecanCount = 0
while True:
ret,frame = cap.read()
if not ret:
break
# Run YOLO11 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True,classes=0,device = device)
# Check if there are any boxes in the results
if results[0].boxes is not None and results[0].boxes.id is not None:
# Get the boxes (x, y, w, h), class IDs, track IDs, and confidences
boxes = results[0].boxes.xyxy.int().cpu().tolist() # Bounding boxes
class_ids = results[0].boxes.cls.int().cpu().tolist() # Class IDs
track_ids = results[0].boxes.id.int().cpu().tolist() # Track IDs
confidences = results[0].boxes.conf.cpu().tolist() # Confidence score
for box, class_id, track_id, conf in zip(boxes, class_ids, track_ids, confidences):
x1, y1, x2, y2 = box
cy = int(y1+y2)//2
if cy<(cy1+offset) and cy>(cy1-offset) and track_id not in idDict.keys():
pecanCount += 1
idDict[track_id] = pecanCount
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
print(pecanCount)