857 lines
355 KiB
Plaintext
857 lines
355 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Excel file 'all_large_data.xlsx' created with 570 rows.\n",
|
||
" Trial SoakingTime Condition Bag Measurement Sample \\\n",
|
||
"0 1 0 Initial Moisture (Trial1) 1 1 1 \n",
|
||
"1 1 0 Initial Moisture (Trial1) 1 1 2 \n",
|
||
"2 1 0 Initial Moisture (Trial1) 1 2 1 \n",
|
||
"3 1 0 Initial Moisture (Trial1) 1 2 2 \n",
|
||
"4 1 0 Initial Moisture (Trial1) 1 3 1 \n",
|
||
"5 1 0 Initial Moisture (Trial1) 1 3 2 \n",
|
||
"6 1 0 Initial Moisture (Trial1) 1 4 1 \n",
|
||
"7 1 0 Initial Moisture (Trial1) 1 4 2 \n",
|
||
"8 1 0 Initial Moisture (Trial1) 1 5 1 \n",
|
||
"9 1 0 Initial Moisture (Trial1) 1 5 2 \n",
|
||
"10 1 0 Initial Moisture (Trial1) 2 1 1 \n",
|
||
"11 1 0 Initial Moisture (Trial1) 2 1 2 \n",
|
||
"12 1 0 Initial Moisture (Trial1) 2 2 1 \n",
|
||
"13 1 0 Initial Moisture (Trial1) 2 2 2 \n",
|
||
"14 1 0 Initial Moisture (Trial1) 2 3 1 \n",
|
||
"15 1 0 Initial Moisture (Trial1) 2 3 2 \n",
|
||
"16 1 0 Initial Moisture (Trial1) 2 4 1 \n",
|
||
"17 1 0 Initial Moisture (Trial1) 2 4 2 \n",
|
||
"18 1 0 Initial Moisture (Trial1) 2 5 1 \n",
|
||
"19 1 0 Initial Moisture (Trial1) 2 5 2 \n",
|
||
"\n",
|
||
" InitialTemp Temp DeltaTemp InitialMC MC% DeltaMC \n",
|
||
"0 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"1 65.2 66 0.8 3.28 3.3 0.02 \n",
|
||
"2 65.2 65 -0.2 3.28 3.1 -0.18 \n",
|
||
"3 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"4 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"5 65.2 64 -1.2 3.28 3.4 0.12 \n",
|
||
"6 65.2 66 0.8 3.28 3.3 0.02 \n",
|
||
"7 65.2 64 -1.2 3.28 3.5 0.22 \n",
|
||
"8 65.2 67 1.8 3.28 3.0 -0.28 \n",
|
||
"9 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"10 65.7 67 1.3 3.27 3.2 -0.07 \n",
|
||
"11 65.7 66 0.3 3.27 3.1 -0.17 \n",
|
||
"12 65.7 67 1.3 3.27 3.3 0.03 \n",
|
||
"13 65.7 63 -2.7 3.27 3.4 0.13 \n",
|
||
"14 65.7 66 0.3 3.27 3.2 -0.07 \n",
|
||
"15 65.7 63 -2.7 3.27 3.3 0.03 \n",
|
||
"16 65.7 67 1.3 3.27 3.3 0.03 \n",
|
||
"17 65.7 66 0.3 3.27 3.3 0.03 \n",
|
||
"18 65.7 65 -0.7 3.27 3.4 0.13 \n",
|
||
"19 65.7 67 1.3 3.27 3.2 -0.07 \n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import seaborn as sns\n",
|
||
"import statsmodels.api as sm\n",
|
||
"import statsmodels.formula.api as smf\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 1. Manually define the data in a nested dictionary.\n",
|
||
"# Each key is a condition block.\n",
|
||
"# For each block, we have data for each bag (keys 1, 2, 3).\n",
|
||
"# Each bag’s value is a list of 5 measurement rows.\n",
|
||
"# In each measurement row, there are 2 sample readings as tuples: (Temp, MC%).\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"data = {\n",
|
||
" \"Initial Moisture (Trial1)\": {\n",
|
||
" 1: [\n",
|
||
" [(65, 3.30), (66, 3.30)],\n",
|
||
" [(65, 3.10), (65, 3.30)],\n",
|
||
" [(65, 3.30), (64, 3.40)],\n",
|
||
" [(66, 3.30), (64, 3.50)],\n",
|
||
" [(67, 3.00), (65, 3.30)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(67, 3.20), (66, 3.10)],\n",
|
||
" [(67, 3.30), (63, 3.40)],\n",
|
||
" [(66, 3.20), (63, 3.30)],\n",
|
||
" [(67, 3.30), (66, 3.30)],\n",
|
||
" [(65, 3.40), (67, 3.20)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(71, 3.00), (68, 3.40)],\n",
|
||
" [(68, 3.20), (69, 3.20)],\n",
|
||
" [(68, 3.30), (70, 3.20)],\n",
|
||
" [(69, 3.20), (70, 3.40)],\n",
|
||
" [(68, 3.20), (70, 3.20)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"6 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 4.30), (68, 4.40)],\n",
|
||
" [(69, 4.20), (67, 4.70)],\n",
|
||
" [(69, 4.20), (67, 4.50)],\n",
|
||
" [(68, 4.30), (68, 4.40)],\n",
|
||
" [(68, 4.20), (67, 4.30)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(71, 4.30), (69, 4.20)],\n",
|
||
" [(69, 4.60), (69, 4.30)],\n",
|
||
" [(69, 4.30), (69, 4.50)],\n",
|
||
" [(68, 4.50), (69, 4.40)],\n",
|
||
" [(68, 4.60), (68, 4.40)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(69, 4.40), (69, 4.60)],\n",
|
||
" [(69, 4.50), (69, 4.70)],\n",
|
||
" [(70, 4.30), (69, 5.00)],\n",
|
||
" [(69, 4.40), (69, 4.50)],\n",
|
||
" [(68, 4.50), (69, 4.50)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"7 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 4.50), (69, 4.50)],\n",
|
||
" [(68, 4.60), (69, 4.60)],\n",
|
||
" [(68, 4.50), (69, 4.50)],\n",
|
||
" [(68, 4.60), (68, 4.80)],\n",
|
||
" [(69, 4.40), (68, 4.60)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(69, 4.70), (69, 4.90)],\n",
|
||
" [(69, 4.70), (69, 5.10)],\n",
|
||
" [(68, 4.70), (69, 4.80)],\n",
|
||
" [(68, 4.70), (69, 5.00)],\n",
|
||
" [(68, 4.80), (68, 4.60)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(70, 4.50), (70, 4.80)],\n",
|
||
" [(69, 4.50), (68, 4.80)],\n",
|
||
" [(69, 4.60), (67, 4.90)],\n",
|
||
" [(69, 4.50), (69, 4.80)],\n",
|
||
" [(69, 4.90), (68, 4.80)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"8 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 5.20), (67, 4.80)],\n",
|
||
" [(69, 4.90), (67, 4.60)],\n",
|
||
" [(69, 5.00), (68, 4.60)],\n",
|
||
" [(68, 5.20), (68, 4.70)],\n",
|
||
" [(68, 5.00), (68, 4.80)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(69, 4.90), (68, 4.70)],\n",
|
||
" [(68, 5.00), (68, 4.80)],\n",
|
||
" [(68, 5.10), (68, 5.10)],\n",
|
||
" [(67, 5.00), (68, 4.60)],\n",
|
||
" [(68, 5.10), (68, 5.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(70, 5.30), (69, 5.20)],\n",
|
||
" [(69, 5.40), (67, 5.20)],\n",
|
||
" [(69, 5.00), (69, 4.80)],\n",
|
||
" [(69, 4.90), (69, 4.90)],\n",
|
||
" [(68, 5.10), (68, 4.90)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"9 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 5.30), (68, 5.00)],\n",
|
||
" [(68, 5.60), (68, 5.30)],\n",
|
||
" [(68, 5.20), (68, 5.10)],\n",
|
||
" [(68, 5.30), (68, 4.90)],\n",
|
||
" [(68, 5.10), (68, 5.00)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(71, 5.20), (69, 5.30)],\n",
|
||
" [(70, 5.40), (69, 5.10)],\n",
|
||
" [(70, 5.30), (69, 5.00)],\n",
|
||
" [(70, 5.10), (69, 5.10)],\n",
|
||
" [(69, 5.20), (68, 5.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(71, 5.30), (68, 5.30)],\n",
|
||
" [(71, 5.40), (69, 5.20)],\n",
|
||
" [(70, 5.50), (68, 5.40)],\n",
|
||
" [(68, 5.70), (68, 5.20)],\n",
|
||
" [(68, 5.40), (68, 5.40)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"10 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 5.30), (68, 5.00)],\n",
|
||
" [(68, 5.60), (68, 5.30)],\n",
|
||
" [(68, 5.20), (68, 5.10)],\n",
|
||
" [(68, 5.30), (68, 4.90)],\n",
|
||
" [(68, 5.10), (68, 5.00)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(71, 5.20), (69, 5.30)],\n",
|
||
" [(70, 5.40), (69, 5.10)],\n",
|
||
" [(70, 5.30), (69, 5.00)],\n",
|
||
" [(70, 5.10), (69, 5.10)],\n",
|
||
" [(69, 5.20), (68, 5.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(71, 5.30), (68, 5.30)],\n",
|
||
" [(71, 5.40), (69, 5.20)],\n",
|
||
" [(70, 5.50), (68, 5.40)],\n",
|
||
" [(68, 5.70), (68, 5.20)],\n",
|
||
" [(68, 5.40), (68, 5.40)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"Initial Moisture (Trial2)\": {\n",
|
||
" 1: [\n",
|
||
" [(67, 3.20), (66, 3.50)],\n",
|
||
" [(65, 3.30), (63, 3.50)],\n",
|
||
" [(67, 3.10), (63, 3.50)],\n",
|
||
" [(67, 3.20), (65, 3.50)],\n",
|
||
" [(68, 3.30), (64, 3.40)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(68, 3.20), (68, 3.30)],\n",
|
||
" [(69, 3.30), (68, 3.30)],\n",
|
||
" [(68, 3.40), (68, 3.30)],\n",
|
||
" [(68, 3.30), (68, 3.30)],\n",
|
||
" [(67, 3.30), (67, 3.30)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(67, 3.30), (68, 3.30)],\n",
|
||
" [(66, 3.40), (68, 3.30)],\n",
|
||
" [(67, 3.40), (69, 3.30)],\n",
|
||
" [(67, 3.50), (69, 3.40)],\n",
|
||
" [(68, 3.30), (68, 3.00)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"14 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 6.80), (68, 6.70)],\n",
|
||
" [(67, 7.00), (68, 6.60)],\n",
|
||
" [(68, 6.80), (68, 6.70)],\n",
|
||
" [(67, 6.70), (68, 6.40)],\n",
|
||
" [(67, 6.90), (67, 6.60)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(68, 6.10), (68, 6.60)],\n",
|
||
" [(67, 6.00), (67, 6.70)],\n",
|
||
" [(66, 6.40), (67, 6.90)],\n",
|
||
" [(67, 6.30), (67, 6.70)],\n",
|
||
" [(67, 6.00), (68, 6.40)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(70, 5.70), (70, 6.50)],\n",
|
||
" [(70, 6.00), (69, 6.30)],\n",
|
||
" [(70, 5.90), (68, 6.40)],\n",
|
||
" [(70, 5.60), (68, 6.70)],\n",
|
||
" [(69, 5.80), (68, 6.60)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"15 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 7.20), (69, 7.30)],\n",
|
||
" [(68, 7.20), (69, 6.80)],\n",
|
||
" [(67, 7.10), (68, 7.00)],\n",
|
||
" [(68, 7.50), (68, 6.90)],\n",
|
||
" [(68, 7.10), (68, 7.20)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 6.60), (68, 6.60)],\n",
|
||
" [(68, 6.70), (67, 6.60)],\n",
|
||
" [(67, 6.70), (67, 6.80)],\n",
|
||
" [(68, 6.50), (68, 6.70)],\n",
|
||
" [(68, 6.80), (68, 6.60)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(69, 5.90), (69, 6.30)],\n",
|
||
" [(67, 6.10), (69, 6.20)],\n",
|
||
" [(68, 6.10), (68, 6.40)],\n",
|
||
" [(68, 5.90), (69, 6.40)],\n",
|
||
" [(68, 6.20), (69, 6.30)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"16 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 6.90), (69, 6.90)],\n",
|
||
" [(68, 6.70), (69, 6.90)],\n",
|
||
" [(68, 7.00), (68, 6.70)],\n",
|
||
" [(68, 6.80), (68, 7.00)],\n",
|
||
" [(68, 6.80), (67, 7.20)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(67, 6.60), (68, 7.00)],\n",
|
||
" [(67, 6.80), (68, 6.90)],\n",
|
||
" [(69, 6.40), (68, 7.30)],\n",
|
||
" [(68, 6.60), (68, 7.50)],\n",
|
||
" [(68, 6.60), (67, 7.40)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(67, 6.30), (68, 6.70)],\n",
|
||
" [(68, 6.20), (68, 6.80)],\n",
|
||
" [(67, 6.30), (68, 6.90)],\n",
|
||
" [(68, 6.20), (68, 6.80)],\n",
|
||
" [(68, 6.20), (68, 6.70)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"17 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(70, 6.90), (68, 7.00)],\n",
|
||
" [(68, 7.20), (68, 7.10)],\n",
|
||
" [(67, 6.90), (68, 7.00)],\n",
|
||
" [(68, 7.30), (68, 7.00)],\n",
|
||
" [(67, 6.90), (68, 7.00)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 7.00), (69, 7.00)],\n",
|
||
" [(69, 6.90), (69, 6.90)],\n",
|
||
" [(69, 7.10), (68, 7.00)],\n",
|
||
" [(69, 7.00), (69, 7.00)],\n",
|
||
" [(68, 7.00), (68, 7.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(71, 6.70), (70, 6.50)],\n",
|
||
" [(70, 7.00), (68, 6.50)],\n",
|
||
" [(68, 7.00), (67, 6.60)],\n",
|
||
" [(67, 7.10), (68, 6.60)],\n",
|
||
" [(68, 7.00), (67, 6.60)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"18 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 7.40), (68, 7.10)],\n",
|
||
" [(69, 7.10), (68, 7.10)],\n",
|
||
" [(68, 7.20), (68, 7.20)],\n",
|
||
" [(67, 7.40), (67, 7.10)],\n",
|
||
" [(68, 7.30), (67, 7.20)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 7.40), (71, 7.20)],\n",
|
||
" [(70, 7.10), (70, 7.70)],\n",
|
||
" [(70, 7.10), (68, 7.80)],\n",
|
||
" [(69, 7.30), (68, 7.50)],\n",
|
||
" [(69, 7.20), (68, 7.40)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(67, 7.00), (68, 7.00)],\n",
|
||
" [(67, 6.80), (68, 6.90)],\n",
|
||
" [(67, 6.70), (67, 7.10)],\n",
|
||
" [(68, 6.60), (67, 6.90)],\n",
|
||
" [(68, 6.70), (67, 6.90)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"Initial Moisture (Trial3)\": {\n",
|
||
" 1: [\n",
|
||
" [(66, 2.90), (68, 2.90)],\n",
|
||
" [(66, 3.00), (68, 2.90)],\n",
|
||
" [(64, 3.10), (69, 2.90)],\n",
|
||
" [(65, 2.90), (69, 3.00)],\n",
|
||
" [(65, 3.00), (69, 2.80)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 2.90), (70, 2.90)],\n",
|
||
" [(70, 3.00), (70, 3.00)],\n",
|
||
" [(68, 2.90), (69, 2.90)],\n",
|
||
" [(69, 2.90), (70, 3.00)],\n",
|
||
" [(68, 3.00), (70, 3.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(69, 2.80), (70, 2.90)],\n",
|
||
" [(70, 2.90), (68, 3.00)],\n",
|
||
" [(70, 2.90), (70, 3.00)],\n",
|
||
" [(67, 3.00), (68, 3.00)],\n",
|
||
" [(67, 3.00), (69, 3.00)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"26 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 7.80), (68, 8.70)],\n",
|
||
" [(68, 8.00), (67, 8.80)],\n",
|
||
" [(68, 7.70), (67, 8.40)],\n",
|
||
" [(68, 7.80), (67, 8.80)],\n",
|
||
" [(68, 7.80), (67, 8.40)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(77, 7.80), (70, 8.10)],\n",
|
||
" [(77, 7.80), (69, 8.00)],\n",
|
||
" [(69, 7.70), (69, 8.30)],\n",
|
||
" [(68, 7.70), (69, 8.00)],\n",
|
||
" [(68, 7.90), (68, 8.00)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(69, 8.40), (68, 8.30)],\n",
|
||
" [(68, 8.10), (68, 8.00)],\n",
|
||
" [(68, 8.60), (69, 8.10)],\n",
|
||
" [(68, 8.20), (69, 8.10)],\n",
|
||
" [(68, 8.40), (69, 8.00)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"27 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 8.10), (69, 8.80)],\n",
|
||
" [(68, 8.10), (68, 8.30)],\n",
|
||
" [(67, 8.60), (68, 8.60)],\n",
|
||
" [(68, 8.50), (68, 8.40)],\n",
|
||
" [(68, 8.10), (67, 8.70)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 8.10), (68, 8.30)],\n",
|
||
" [(68, 8.00), (68, 8.60)],\n",
|
||
" [(69, 8.30), (68, 8.60)],\n",
|
||
" [(68, 8.20), (69, 8.50)],\n",
|
||
" [(68, 8.60), (68, 8.50)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(70, 8.20), (69, 8.50)],\n",
|
||
" [(70, 8.20), (69, 8.50)],\n",
|
||
" [(70, 8.20), (69, 8.60)],\n",
|
||
" [(70, 8.20), (69, 8.50)],\n",
|
||
" [(70, 8.30), (69, 8.10)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"28 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 8.60), (68, 8.80)],\n",
|
||
" [(68, 8.50), (68, 9.20)],\n",
|
||
" [(68, 8.50), (69, 8.90)],\n",
|
||
" [(68, 8.70), (69, 8.90)],\n",
|
||
" [(69, 8.30), (69, 8.90)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 8.00), (68, 9.40)],\n",
|
||
" [(69, 8.90), (69, 8.50)],\n",
|
||
" [(69, 8.00), (69, 9.30)],\n",
|
||
" [(69, 9.20), (68, 8.30)],\n",
|
||
" [(68, 8.30), (69, 9.20)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(68, 8.40), (68, 8.70)],\n",
|
||
" [(69, 8.50), (68, 8.80)],\n",
|
||
" [(69, 8.00), (68, 8.20)],\n",
|
||
" [(69, 8.30), (67, 8.80)],\n",
|
||
" [(68, 8.20), (68, 8.70)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"29 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(70, 8.40), (69, 8.80)],\n",
|
||
" [(68, 8.50), (68, 9.00)],\n",
|
||
" [(68, 8.60), (68, 8.50)],\n",
|
||
" [(68, 8.30), (68, 8.70)],\n",
|
||
" [(69, 8.60), (68, 8.80)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(70, 8.70), (67, 9.10)],\n",
|
||
" [(69, 8.90), (68, 8.70)],\n",
|
||
" [(69, 8.10), (68, 8.60)],\n",
|
||
" [(70, 8.10), (68, 8.70)],\n",
|
||
" [(69, 8.10), (68, 8.60)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(70, 8.70), (67, 9.00)],\n",
|
||
" [(69, 8.90), (68, 8.80)],\n",
|
||
" [(68, 8.10), (69, 8.80)],\n",
|
||
" [(67, 8.80), (68, 8.80)],\n",
|
||
" [(68, 8.10), (69, 8.80)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"30 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(68, 9.20), (68, 8.90)],\n",
|
||
" [(68, 9.40), (68, 9.30)],\n",
|
||
" [(67, 9.30), (68, 8.80)],\n",
|
||
" [(68, 9.40), (67, 8.50)],\n",
|
||
" [(68, 9.40), (66, 8.90)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(69, 9.80), (68, 9.60)],\n",
|
||
" [(68, 9.40), (67, 9.50)],\n",
|
||
" [(68, 9.60), (68, 9.30)],\n",
|
||
" [(68, 9.60), (67, 9.40)],\n",
|
||
" [(68, 9.30), (68, 9.50)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(69, 8.50), (68, 8.70)],\n",
|
||
" [(69, 8.50), (68, 8.60)],\n",
|
||
" [(68, 9.80), (68, 9.60)],\n",
|
||
" [(69, 8.50), (68, 8.60)],\n",
|
||
" [(67, 8.20), (67, 8.50)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
" \"31 hours\": {\n",
|
||
" 1: [\n",
|
||
" [(69, 9.30), (67, 9.30)],\n",
|
||
" [(66, 9.50), (66, 9.30)],\n",
|
||
" [(67, 9.30), (66, 9.10)],\n",
|
||
" [(67, 9.50), (67, 9.30)],\n",
|
||
" [(67, 9.50), (67, 9.30)],\n",
|
||
" ],\n",
|
||
" 2: [\n",
|
||
" [(67, 8.50), (68, 9.00)],\n",
|
||
" [(67, 8.70), (67, 9.00)],\n",
|
||
" [(67, 9.20), (67, 9.20)],\n",
|
||
" [(68, 9.10), (68, 8.60)],\n",
|
||
" [(67, 8.90), (67, 8.90)],\n",
|
||
" ],\n",
|
||
" 3: [\n",
|
||
" [(68, 8.90), (69, 8.80)],\n",
|
||
" [(68, 8.80), (67, 8.90)],\n",
|
||
" [(68, 8.60), (67, 8.90)],\n",
|
||
" [(68, 8.60), (66, 8.70)],\n",
|
||
" [(67, 8.90), (67, 8.70)],\n",
|
||
" ],\n",
|
||
" },\n",
|
||
"}\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 2. Convert the nested dictionary into a list of tidy rows.\n",
|
||
"# Here each row will contain:\n",
|
||
"# Condition, SoakingTime, Trial, Bag, Measurement, Sample, Temp, MC%\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"rows = []\n",
|
||
"\n",
|
||
"\n",
|
||
"def get_trial(condition):\n",
|
||
" # Determine trial based on the condition key\n",
|
||
" if \"Trial1\" in condition or condition in [\"6 hours\", \"7 hours\", \"8 hours\", \"9 hours\", \"10 hours\"]:\n",
|
||
" return 1\n",
|
||
" elif \"Trial2\" in condition or condition in [\"14 hours\", \"15 hours\", \"16 hours\", \"17 hours\", \"18 hours\"]:\n",
|
||
" return 2\n",
|
||
" elif \"Trial3\" in condition or condition in [\"26 hours\", \"27 hours\", \"28 hours\", \"29 hours\", \"30 hours\", \"31 hours\"] or \"Initial Moisture (Trial3)\" in condition:\n",
|
||
" return 3\n",
|
||
" else:\n",
|
||
" return None\n",
|
||
"\n",
|
||
"\n",
|
||
"def get_soaking_time(condition):\n",
|
||
" # For initial measurements, use 0; otherwise, extract the first token as the numeric time\n",
|
||
" if \"Initial Moisture\" in condition:\n",
|
||
" return 0\n",
|
||
" try:\n",
|
||
" return int(condition.split()[0])\n",
|
||
" except:\n",
|
||
" return None\n",
|
||
"\n",
|
||
"\n",
|
||
"for condition, bags in data.items():\n",
|
||
" trial = get_trial(condition)\n",
|
||
" soaking_time = get_soaking_time(condition)\n",
|
||
" for bag, meas_list in bags.items():\n",
|
||
" for m_idx, meas in enumerate(meas_list, start=1):\n",
|
||
" # We assume each measurement row has 2 sample readings (for that bag)\n",
|
||
" for s_idx, (temp, mc) in enumerate(meas, start=1):\n",
|
||
" rows.append({\"Condition\": condition, \"Trial\": trial, \"SoakingTime\": soaking_time, \"Bag\": bag, \"Measurement\": m_idx, \"Sample\": s_idx, \"Temp\": temp, \"MC%\": mc})\n",
|
||
"\n",
|
||
"# Create a DataFrame from the collected rows.\n",
|
||
"df = pd.DataFrame(rows)\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 3. Compute baseline values (initial measurements) for each trial and bag.\n",
|
||
"# For each trial, use the rows where Condition contains \"Initial Moisture\" to get the baseline.\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"baseline = {} # structure: { trial: { bag: { \"InitialTemp\": value, \"InitialMC\": value } } }\n",
|
||
"\n",
|
||
"for trial in df[\"Trial\"].unique():\n",
|
||
" trial = int(trial)\n",
|
||
" # Filter for initial measurements for this trial.\n",
|
||
" init_df = df[df[\"Condition\"].str.contains(\"Initial Moisture\") & (df[\"Trial\"] == trial)]\n",
|
||
" # Compute the average baseline for each bag.\n",
|
||
" for bag in sorted(init_df[\"Bag\"].unique()):\n",
|
||
" bag_df = init_df[init_df[\"Bag\"] == bag]\n",
|
||
" baseline.setdefault(trial, {})[bag] = {\"InitialTemp\": bag_df[\"Temp\"].mean(), \"InitialMC\": bag_df[\"MC%\"].mean()}\n",
|
||
"\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 4. For each non-initial measurement row, add the baseline values and compute deltas.\n",
|
||
"# (For initial rows, delta will be zero.)\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"def assign_baseline(row):\n",
|
||
" trial = int(row[\"Trial\"])\n",
|
||
" bag = row[\"Bag\"]\n",
|
||
" base = baseline.get(trial, {}).get(bag, {\"InitialTemp\": None, \"InitialMC\": None})\n",
|
||
" return pd.Series({\"InitialTemp\": base[\"InitialTemp\"], \"InitialMC\": base[\"InitialMC\"]})\n",
|
||
"\n",
|
||
"\n",
|
||
"df_baseline = df.apply(assign_baseline, axis=1)\n",
|
||
"df = pd.concat([df, df_baseline], axis=1)\n",
|
||
"\n",
|
||
"# Compute delta columns.\n",
|
||
"df[\"DeltaTemp\"] = df[\"Temp\"] - df[\"InitialTemp\"]\n",
|
||
"df[\"DeltaMC\"] = df[\"MC%\"] - df[\"InitialMC\"]\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 5. Rearrange columns for clarity.\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"df = df[[\"Trial\", \"SoakingTime\", \"Condition\", \"Bag\", \"Measurement\", \"Sample\", \"InitialTemp\", \"Temp\", \"DeltaTemp\", \"InitialMC\", \"MC%\", \"DeltaMC\"]]\n",
|
||
"\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"# 6. Save the tidy data to an Excel file.\n",
|
||
"# ------------------------------------------------------------------\n",
|
||
"output_filename = \"all_large_data.xlsx\"\n",
|
||
"df.to_excel(output_filename, index=False)\n",
|
||
"print(f\"Excel file '{output_filename}' created with {len(df)} rows.\")\n",
|
||
"print(df.head(20))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"First 10 rows:\n",
|
||
" Trial SoakingTime Condition Bag Measurement Sample \\\n",
|
||
"0 1 0 Initial Moisture (Trial1) 1 1 1 \n",
|
||
"1 1 0 Initial Moisture (Trial1) 1 1 2 \n",
|
||
"2 1 0 Initial Moisture (Trial1) 1 2 1 \n",
|
||
"3 1 0 Initial Moisture (Trial1) 1 2 2 \n",
|
||
"4 1 0 Initial Moisture (Trial1) 1 3 1 \n",
|
||
"5 1 0 Initial Moisture (Trial1) 1 3 2 \n",
|
||
"6 1 0 Initial Moisture (Trial1) 1 4 1 \n",
|
||
"7 1 0 Initial Moisture (Trial1) 1 4 2 \n",
|
||
"8 1 0 Initial Moisture (Trial1) 1 5 1 \n",
|
||
"9 1 0 Initial Moisture (Trial1) 1 5 2 \n",
|
||
"\n",
|
||
" InitialTemp Temp DeltaTemp InitialMC MC% DeltaMC \n",
|
||
"0 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"1 65.2 66 0.8 3.28 3.3 0.02 \n",
|
||
"2 65.2 65 -0.2 3.28 3.1 -0.18 \n",
|
||
"3 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"4 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"5 65.2 64 -1.2 3.28 3.4 0.12 \n",
|
||
"6 65.2 66 0.8 3.28 3.3 0.02 \n",
|
||
"7 65.2 64 -1.2 3.28 3.5 0.22 \n",
|
||
"8 65.2 67 1.8 3.28 3.0 -0.28 \n",
|
||
"9 65.2 65 -0.2 3.28 3.3 0.02 \n",
|
||
"\n",
|
||
"DataFrame info:\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 570 entries, 0 to 569\n",
|
||
"Data columns (total 12 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 Trial 570 non-null int64 \n",
|
||
" 1 SoakingTime 570 non-null int64 \n",
|
||
" 2 Condition 570 non-null object \n",
|
||
" 3 Bag 570 non-null int64 \n",
|
||
" 4 Measurement 570 non-null int64 \n",
|
||
" 5 Sample 570 non-null int64 \n",
|
||
" 6 InitialTemp 570 non-null float64\n",
|
||
" 7 Temp 570 non-null int64 \n",
|
||
" 8 DeltaTemp 570 non-null float64\n",
|
||
" 9 InitialMC 570 non-null float64\n",
|
||
" 10 MC% 570 non-null float64\n",
|
||
" 11 DeltaMC 570 non-null float64\n",
|
||
"dtypes: float64(5), int64(6), object(1)\n",
|
||
"memory usage: 53.6+ KB\n",
|
||
"None\n",
|
||
"\n",
|
||
"Summary statistics:\n",
|
||
" Trial SoakingTime Bag Measurement Sample \\\n",
|
||
"count 570.000000 570.000000 570.000000 570.000000 570.000000 \n",
|
||
"mean 2.052632 15.315789 2.000000 3.000000 1.500000 \n",
|
||
"std 0.826219 10.406767 0.817214 1.415456 0.500439 \n",
|
||
"min 1.000000 0.000000 1.000000 1.000000 1.000000 \n",
|
||
"25% 1.000000 7.000000 1.000000 2.000000 1.000000 \n",
|
||
"50% 2.000000 15.000000 2.000000 3.000000 1.500000 \n",
|
||
"75% 3.000000 27.000000 3.000000 4.000000 2.000000 \n",
|
||
"max 3.000000 31.000000 3.000000 5.000000 2.000000 \n",
|
||
"\n",
|
||
" InitialTemp Temp DeltaTemp InitialMC MC% DeltaMC \n",
|
||
"count 570.000000 570.000000 570.000000 570.000000 570.000000 570.000000 \n",
|
||
"mean 67.408772 68.171930 0.763158 3.164561 6.310877 3.146316 \n",
|
||
"std 1.516666 1.311803 1.710880 0.169317 2.002868 2.096736 \n",
|
||
"min 65.200000 63.000000 -2.900000 2.940000 2.800000 -0.320000 \n",
|
||
"25% 65.700000 68.000000 -0.700000 2.950000 4.800000 1.520000 \n",
|
||
"50% 67.700000 68.000000 0.300000 3.270000 6.600000 3.300000 \n",
|
||
"75% 68.800000 69.000000 2.300000 3.300000 8.200000 5.250000 \n",
|
||
"max 69.400000 77.000000 7.600000 3.350000 9.800000 6.850000 \n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# -------------------------------\n",
|
||
"# 1. Load the tidy data from Excel\n",
|
||
"# -------------------------------\n",
|
||
"df = pd.read_excel(\"all_large_data.xlsx\")\n",
|
||
"\n",
|
||
"# Display first few rows and info\n",
|
||
"print(\"First 10 rows:\")\n",
|
||
"print(df.head(10))\n",
|
||
"print(\"\\nDataFrame info:\")\n",
|
||
"print(df.info())\n",
|
||
"print(\"\\nSummary statistics:\")\n",
|
||
"print(df.describe())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABioAAAH3CAYAAAAloQddAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh0ElEQVR4nOzdd3RU1fr/8c+kQoAIoRiaCEiQGhClK12aFxEBFQUpgoqgeBEBpagoF7168UvvJQhIRwTpVboSikDohC4EAqGkJ/P7g19GQtqZkOTMJO/XWlkrZ0575snJ7OQ8Z+9tsVqtVgEAAAAAAAAAAJjAxewAAAAAAAAAAABAzkWhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAADiVPXv2qHz58o/01blzZ7vOOWjQINu+ISEhmfZ+pkyZkmHHjY6O1ksvvaTy5cvrwIEDGXbcR3Hx4sUkP4utW7fadYzBgwcn2n/VqlUZHmdm/ryl+3m4e/duhh/XGYSGhiogIEA9e/ZUgwYNVKVKFfn7+6tRo0Z6//33tXjxYkVERJgdpmHR0dE6ffq02WGk6d69e7pw4UKGHOv48eOqUqWKXn31VVmtVtvrD/7elC9fXh06dLDruA9/PrRo0cLQfqdPn9aPP/6oTp06qU6dOqpcubKeeeYZtWjRQp9++qm2bt2aKM6U7N69W507d1b16tVVvXp1vf3229q9e3ea+02YMEHly5fXhx9+mOa2U6ZMUfny5TV+/HhD7w0AACAnoVABAACQDf3vf//TyZMnzQ4jTWvXrjW8bXR0tDZs2JCJ0WSu6OhojRs3Tq1bt9atW7fMDidLRUVF6X//+58aNWqkb775Rtu2bdPff/+t6OhoRUZG6vLly9q0aZM+//xzNW/eXJs3bzY75DTt3LlTbdq00W+//WZ2KKn67bff1LJlS/3xxx+PfKzo6Gh98sknio6O1meffSaLxZLitn/99ZeuXLli+NirV6+2K5arV6/qww8/VOvWrTVx4kTt27dPoaGhiomJ0b1793T27Fn98ssv6tWrl1577bVUC0rbtm1T9+7dtXfvXoWHhys8PFy7d+9Wt27dtGLFihT3u3nzpqZPny5XV1f169cvzZi7du2qEiVKaMKECTp06JBd7xcAACC7czM7AAAAAHtUrlxZy5cvT3bd4cOHNWTIEElSo0aN9NFHHyW7nZeXV2aF5xAmT56smTNnmh2GIRs3blRsbKzc3NL+s3THjh26fft2FkSVOaZOnaqxY8eaHUaWu3Hjhnr16qXDhw9Lknx8fPTyyy+rRo0aKlKkiOLi4nTmzBn99ttv2rFjh65evarevXvrq6++svup/Kxy5coVdevWzeww0vTnn3/q448/zrDjTZ06VSdOnFDz5s1Vo0aNVLe1Wq1au3atunbtaujY9hQqDh48qHfffVc3b96UJJUtW1Zt2rRRpUqV9Nhjjyk8PFxHjx7V4sWLdfr0aR08eFBvvPGGZsyYocqVKyc6VlxcnL744gvFxcXJz89P/fr1k6enpyZPnqy9e/dq+PDhatCggR577LEkcUyePFl3795V+/btVaZMmTTj9vDwUP/+/fXxxx9r2LBhWrJkiVxdXQ2/bwAAgOyMQgUAAHAqefLkUYUKFZJd9+BN7Pz586e4nb1GjRqlUaNGZcixMlN0dLS++eYb/fzzz2aHkqaCBQvqxo0bunXrlvbs2aN69eqluU/CjUwPDw9FR0dnWmyZ9fOOj4/P8GM6uqioKL377ru2IkWrVq00YsQI5c2bN9F2zzzzjNq3b69Vq1Zp4MCBiomJ0RdffKGnnnpK1atXNyP0VMXFxZkdgiEZGeelS5c0ZcoUubi4pFgETpDw+71mzRpDhYoLFy7oyJEjktL+/Q4ODlbPnj0VFhYmi8WiTz75RN27d5eLS+LBAmrXrq0uXbro+++/18yZMxUWFqbevXtr5cqV8vb2tm33xx9/6NKlS3J1ddW0adP0+OOPS5Jq1KihRo0a6ebNm9q4caPatWuX6PhXrlzRvHnz5Onpqb59+6b5HhO0bNlSkydPVlBQkObNm2f3UIQAAADZFUM/AQAAZAOHDh3SG2+8YStSOPpTuvXr11fu3LklGRv+KTo6Whs3bpQkPf/885kaGzLO+PHj9ddff0mSXnrpJX3//fdJihQPat26tQYOHChJio2N1TfffJMlcSJt48aNU2RkpBo3bqyyZcumum2zZs0kSQcOHNDVq1fTPHbC8FlPP/20ChcunOJ2VqtVgwcPVlhYmCRp6NCheuedd5IUKRK4ublp0KBBevHFFyXdHy5q4sSJibY5duyYpPu9MhKKFJKUO3duW5Hs+PHjSY49duxYRUVF6c0335Svr2+a7zGBxWJRz549JUmTJk1yqjlZAAAAMhOFCgAAACf3/fffq2PHjran1ps0aaK3337b5KhSlytXLjVo0ECStGHDhjR7G2zbtk13795V3rx59cILL2RFiHhEoaGhmjVrliTJ29tbX3zxhaECWqdOnfTkk09Kuj/PwcGDBzMxShhx8eJF21wNRobjSpgI22q1av369Wlun9BbqlWrVqlut2XLFgUGBkqSatWqpTfffDPNY0vSwIEDbdfe4sWLFRUVZVsXHh4uSYl6WSRIKKrdu3cv0eunT5/W8uXLlTdvXvXq1ctQDA968cUXlT9/fl2/fl0LFiywe38AAIDsiKGfAABAjtW5c2ft3btXTZo00X//+1+NGjVK69atU2RkpHx9ffXGG2+oa9euGjRokJYtWyZJ2r59e7JP/F64cEGLFi3S3r17deHCBYWFhcnDw0M+Pj7y9/dXu3btDA1vlB4HDx6U1WpV/vz59cknn6hDhw5OMRdCixYttGbNGt24cUN//PGHatWqleK2CTcymzRpIg8PD0PH379/vxYuXKg///xTV69elaurq4oVK6Y6derozTffVOnSpZPdL62f99WrVzV37lxt375dZ8+eVUxMjPLnz6/y5curcePGevXVV5UrVy7b9kuXLtXgwYMTHaNJkyaSpOLFi2vTpk2Gzpvg3Xff1ZYtWyQlfdK7cePGunTpkrp06aJ3331XI0aM0O+//y6r1aoSJUqoV69e+te//mXb3mq1avXq1fr11191+PBh3bx5U3ny5FHZsmXVpEkTvf7668qTJ0+qeU7J8uXLbTeE33rrLeXLl8/Qfq6ururdu7eOHTumZ599NsWn92/cuKH58+dr69atCg4OVkREhHx8fFS1alX961//0osvvpjsZM979uxRly5dbDGWLVtW8+bN02+//aazZ88qOjpaxYsXV8OGDdW9e3cVKlQo0f7ly5dPtDxu3DiNGzdOkhQQEJDkOr5165Z++uknbdmyRefPn1dERIQKFixo+1xIKNg97MHr5o8//pCLi4tmzZql9evX68KFC7JarSpVqpSaNWumt99+O1FPlYsXL9qusQSDBw+2HW/jxo0qUaJEsudNzs8//6zY2FgVLFjQUI+mp556Sk899ZROnTqltWvX6q233kpx2+DgYAUFBUm6PyxSajfuH1z3/vvvG46/RIkS6tmzpzw9PfXss88mKpglFCju3r2bZL+EnhsPX7ujR49WXFycunfvrgIFChiOI4GHh4datmyp+fPna/78+Xr77bdTnZgcAAAgJ6BQAQAAcrzY2Fj16tVLf/75p+214ODgZCdPTc7kyZM1ZswYxcbGJno9JiZG9+7d04ULF7Ry5Uq98cYb+uKLLzIydEn3b7T17NlTPXv2NByzI2jYsKFy586tiIgIrV27NsVCRVRUlO1mfqtWrRQaGprqcaOjozVs2DDbTf8HnTp1SqdOndL8+fPVt29fvffee3bFvGvXLvXp0yfJTc2QkBCFhIRo+/btmj59uqZPn55iISQr3L17V2+++aaCg4Ntr504cSLR0DY3btxQnz59bE+oJ7h165b27dunffv2adasWRozZky65onYunWr7ftGjRrZte/LL7+sl19+OcX1v/32m4YNG6Y7d+4kev3q1atav3691q9fr+eee05jxoyRj49Pise5ceOGPv30U504cSLR66dPn9bp06e1aNEizZw5M8kEzEZt3bpVn3zySZJJ4K9cuaIrV65ozZo1aty4sf773/+mOiTW2bNn1a9fP12+fDnR60FBQQoKCtKiRYv0008/2VV8MCo+Pt72u1S/fn3Dw8q1aNFC48aN059//qkbN26oYMGCyW6XMOxT5cqV9cQTT6R4vOjoaO3atUvS/bmKatasac/bSHFScT8/P0n3f+YhISG2AmFERIStN8+DxalDhw5p/fr1KliwoOGJwpPToEEDzZ8/X8HBwfrzzz/13HPPpftYAAAA2QGFCgAAkOP9/vvvio+PV+PGjdWlSxfFxcVpw4YNtuFLUrNkyRL973//kyT5+vrqrbfeUsWKFZUnTx5dvnxZmzdv1sqVKxUfH6/58+erSZMmGT7HwtixY1Mco92R5c6dWy+88ILWrl2r9evXa+jQock+Vbx161aFh4fL29tbdevW1cqVK1M8Znx8vPr3769169ZJut9joWvXrqpUqZLi4uK0d+9ezZ49W7dv39bo0aMVExNjeCLc27dvq1+/frp79658fHzUs2dPValSRZ6enrp8+bKWLFmibdu26dKlS+rfv7+WLFkii8Wixo0ba/ny5Zo/f77tifApU6aoSJEicnd3T0fm0rZ8+XLFx8erffv2atu2re7cuaOdO3fabu6Gh4erS5cuOnXqlCwWi/71r3+pefPmKlKkiG7duqVt27Zp4cKFunbtmrp3766FCxeqXLlydsWQ8JR87ty5ValSpQx7b+vWrVP//v0VHx8vd3d3dejQQY0bN5a3t7fOnDmjefPm6dChQ/rjjz/UpUsXLViwIMVeIYMGDVJISIief/55tW/fXsWKFdPFixc1Y8YM/fXXX7p9+7YGDhyolStX2q7N5cuX69q1a7Yhf1577TW98cYbkpToRvuuXbv0/vvvKy4uTgULFtSbb76pZ599Vrly5VJwcLAWL16svXv3atOmTerTp4+mT5+eYhHggw8+UEhIiF566SW1bt1aBQsW1OnTpzV58mQFBwfrypUr+uKLLzRt2jRJUpEiRbR8+XIdPnxYQ4YMkST17dvX1suiSJEihvN94MABXb9+XZJUt25dw/slFCri4+O1bt06W44eltBbqmXLlqke78yZM4qMjJQkVa9ePcPm4alRo4aKFi2qK1eu6J133tGHH34oT09PTZ48Wbdu3VK+fPnUtGlT2/Y//PCDpPs9OtLb20i6P3SVm5ubYmNjtWHDBgoVAAAgx6NQAQAAcrz4+HjVqFFD48ePt93wr1+/fpr7Wa1WjRkzRtL9Xg0//fSTSpYsaVtfrVo1tWrVSv7+/hoxYoQkac2aNRleqHDGIkWCFi1aaO3atbp27ZoCAwNVo0aNJNsk3Mhs2rRpmsM+rVy50lakeOaZZzR16tRET6rXrFlTr7zyijp37qxLly5p/PjxatiwoapUqZJmrBs3btStW7ck3R/u58FYq1atqhYtWuijjz7SmjVrdOTIER05ckSVK1dW/vz5lT9//kRDOZUtWzZTnn5PEB8fr5deeinRZNSNGze2fT969GidOnVKbm5uGjduXJIeDy+88IJefvllde7cWeHh4fr888+1cOFCw+e/e/eubdicxx9/PMNuKt+9e1dDhw5VfHy8cufOrWnTpunZZ5+1rff399fLL7+soUOHavHixTp58qRGjx5tu1n/sJCQEL333nuJnravWrWqmjZtqg4dOujYsWM6deqUDh06JH9/f0lShQoVEg0FVLhwYVWoUCHRcSMjIzVgwADFxcXJz89Ps2fPTtSzIyHO//73v5o2bZp27dqlhQsXpngzPyQkRF9//XWi+SH8/f3VtGlTtWrVytabJ6FHgIeHhypUqJCoJ0exYsWSxGnE7t27bd/bs3+5cuVUtmxZnT59OsVCxenTp229WdIqVFy6dMn2fbFixQzHkRZXV1d9/fXXeu+993Ts2DH17t07ybqEz5Dt27dr9+7dKlGihF577bVHOq+Xl5eeeOIJnTlzxtZTBAAAICdz3v9qAQAAMtBrr71m9w3/S5cu6bHHHlO+fPnUrl27REWKB7Vp08b2/dWrVx8pzuymYcOGtvkc1q5dm2R9RESEbT6GtCbalaTp06dLuj8G/OjRo5MdTqd48eIaNWqUpPvFpoR90hISEmL7PmGy54e99957euONN/Tpp5+aPgxXSje9b9++rUWLFkm6PzFySsMyValSRe+8846k+/Og2DOp9YOTD6dnDP+ULF682FYs6tu3b6IiRQIXFxcNHz7c9jNauHChbZ+HFS5cONkeNR4eHnrllVdsy8eOHbMrzhUrVtiul2+++SbF4ac+/vhjlSpVStL9+S1SUqVKlWQnsfb29rbd4LdarUnmLMkIf/31lyTJ3d3d7uHMEnql7d27Vzdv3kyyPqEIWa1aNRUvXjzVY2XWNSXdL0zPnTtX9evXl5eXl7y8vFS7dm3Nnj070cTgCb3n+vbtayuanjlzRkOHDlWHDh305ptvaty4ccnOd5GchF5Kp06dUkRERIa+JwAAAGdDoQIAAED3b5TZq0SJElqxYoX+/PNPDRw4MMXt8uXLZ7sZHx0dnd4QsyUvLy/bZMLr169Psn7Lli0KDw9X/vz5VadOnVSPFRISYruh3LBhQ/n6+qa4bc2aNfXUU09Jknbs2KH4+Pg0Yy1Tpozt+z59+ujQoUNJtqlQoYK++OIL9ejRI8XCVVZwc3NLsZfI3r17bTdF05rg/YUXXrB9b89T3w8W/TLymt++fbuk+0+6J3fjPoGHh4dtfVRUlPbu3ZvsdrVr15abW/KdzB8cxunBm+RGJBTX8uXLp6pVq6a4nZubm+1ncObMmRQLman9nB4lTiPOnTsn6f7QdkYnsk+QcJM/YXijhxkd9klSol45mfE56u/vr+nTp2v//v3av3+/Zs+enWg4ptWrV+vIkSPy8/OzFZ8PHjyodu3aaeHChTp06JD+/PNPjR07Vq+88oqhonRCMS0uLk4XLlzI8PcEAADgTBj6CQAAQFLRokUfaf+EG7N3797VhQsXdP78eZ0+fVpBQUHat2+fbWx1q9X6yLFmNwnDP12+fFkHDx60DbEj/XMjs3nz5ineUE5w6tQp2/cPHiMl/v7+OnXqlG7fvq0rV66k+UR3w4YNVb58eR0/flyBgYHq0KGDihQponr16qlOnTqqV6+eChUqlOZ5s0KBAgXk6emZ7LqjR4/avu/Tp4/hY9pzI9Xb21sWi0VWqzXF3gzpcfLkSUlS6dKl5e3tneq2DxYfT5w4oRdffDHJNqn9zL28vGzfx8bG2hVnwvwcd+7cSTQRc1ouXLiQaMLzBKkNE/ZgnHFxcXZEaUxCz5C08p0cPz8/lSlTRmfOnNHatWsTFZdOnjxpmyPFSKHiwR5KGXlNGREbG6v/+7//kyT169dPLi4uio+P1+DBgxUREaHmzZvr888/V2RkpAYNGqTAwEANGTJEU6dOTfW4Dw4hdu3aNdvE3gAAADkRhQoAAJDjubu72/2k8INOnz6tmTNnatu2bck+RZvcBNHO4tSpU4qJiUlx/RNPPPFIE8pK/wz/FBkZqTVr1tiKDOHh4dq2bZskY09cPzi0TMGCBdPc/sGiQlhYWJqFCjc3N02dOlVDhgyxxXXt2jUtW7ZMy5Ytk8ViUdWqVfXyyy+rQ4cOj3RNParUfibJDcFjxIPzHaTF09NTvr6+unLliq5fv67Y2Ng0C01GJNygTmkopQc9eA2kdGM7tTw9yu9tRuf4wWLEwx6MMzMKoeHh4ZJSz1VqWrRooQkTJmj37t26ffu2reCRUISsUaNGssWZhyUMkSVl/RB6ixcvVnBwsKpXr26bkHzPnj06ffq08uXLp++++87Wa2706NFq1KiRtm3bpvPnzyfq8fKwBwsVCXkGAADIqShUAACAHO9RbkguWbJEw4YNS/TEdf78+VWmTBmVK1dO/v7+qlevnlq2bOmUN6J69eqVaBLbhwUEBKhWrVqPdA4vLy+98MILWrdundatW2cbRmvz5s2KiIhQoUKFVLNmzUc6R3IefPrc6Pwkjz/+uKZOnaoTJ05o7dq12rJli44ePar4+HhZrVbbXA4LFizQrFmzDN1Qt5eRYapSu6YffN/jx49Ps0CTILn5PlLj7++vK1euKCoqSgcPHkx2ovSUXLt2TePGjVOtWrVUs2ZN20Tk9tyIfzBPWT3hfMLnQfny5fXtt98a3i8zJ1hPr4RrKb0ToicUKmJiYrRp0ya1bdtW0j+FCiNzz0hSyZIlVbBgQd24cUMHDhxQdHS0XcXAHTt2aOfOnapVq5Zq1KhhuPASGRmp8ePHS5L69+9ve33fvn2S7s8fklCkkO4PkVWqVCmdPXtWgYGBqRYqHrwunbmgDQAAkBEoVAAAAKTT8ePHbUWKPHnyqG/fvmrWrFmSm43x8fG2oZ+QvBYtWmjdunW6ePGijhw5okqVKmnNmjWS7g/7ZOQm6YNDw9y4cSPN7R/cxt6Jr/38/OTn56e+ffsqLCxMe/bs0bZt27RmzRrduXNHx48f1/fff6+RI0caPqbRJ+Pv3LljV6wPe/C9+vj4qEKFCo90vJQ0aNDA9jPcsWOHXYWKLVu2aMGCBVqwYIHatGmj//73v5Lux37t2jWFhoameYzr16/bvs/qic3z58+vkJAQRUVFZVp+s0qePHl069atdH+GlS9fXqVLl9bZs2e1Zs0atW3bVsePH9eZM2fk6uqq5s2bGz7WCy+8oGXLlik8PFyBgYGqXbu24X2XLl2qlStXatq0afr6669TnePkQQEBAbp27ZpeeOGFRHNWXLt2TVLyvbcKFCigs2fP2obNSsmDxetH7ZkGAADg7JhMGwAAIJ0WLFhge3J62LBh6tatW7JPRP/999+GnoJ3RJs2bdLx48dT/HrU3hQJGjZsaJtTYd26dYmGfTL6xPWDcwEkN9H1ww4cOCDpfo8OI0PPREdH6+TJkzp8+HCi1x977DG9+OKL+vrrr/XLL7/YhrZJmFDZqAeLMandFL5y5Ypdx31YuXLlbN8fPHgw1W3Pnj2riRMnasWKFQoODrbrPC+++KLt5uuiRYsM3+i2Wq2aO3eubbl169a27xN+xmfPnk1zKKoH39uDE6FnhYQcnzt3Ls2iyqpVqzR79mxt2LDBIXtdFSlSRNI/N+bTI2FS7Z07d+revXu2AtZzzz1n17wur7zyiu37OXPmGN7v2rVrWrdunaT7w5I1bdrU0H63b9/WtGnTZLFY9O9//9vw+RJ6LaX1uf9gMc3IZxAAAEB2RqECAAAgnc6dO2f7vlKlSilut2LFCtv39k7Km1PkyZNHL7zwgiRpw4YN2rp1qyIjI/X4448bfhK/UKFCthvZmzdvTnUc+927d+vs2bOSpDp16hgaGqh169Z66aWX1Ldv3xS3KV68uJ566ilJUlRUVKJ1aQ3t8uB49SkNt3X8+HH9/fffacaamjp16tjmi1i0aFGqc5BMnDhRP/74owYMGGAr7BiVN29edenSRdL9G8VGe5fMnDlTx44dkyRVqFBBDRo0sK2rX7++pPs3ghcvXpziMaKjo7VkyRJJ9+cWyaiCWoK0rpeEOK1Wq37++ecUt7tz546GDh2qkSNHasCAARk+/E9GDHn15JNPSrr/M0zv51dCoSIqKkrbtm2zFQ2MFiETJAzbJN3/nFi1alWa+8THx2v48OGKjo6WJHXs2FEFChQwdL4pU6YoLCxMrVq1StIzJqEnRXIFnITPnrTmykn4PXd1dVXJkiUNxQQAAJBdUagAAABIpwdvdiU8/f+wrVu32sY3l2S7WYakEm5mnjp1SjNmzLC9Zs/N227dukm6n+f+/fvr3r17Sba5fPmyPvvsM0n3iwcJ+6SlYcOGtv1nzpyZ7DanT5/W0aNHJd0fu/5BD46nn9yT8w/2CPnpp5+SrL93756+/PJLQ7GmpnDhwnrppZds8Y4YMSLZoaZWr16tX3/91bZPws/HHu+9957Kli0r6X4PpGHDhqXYa8BqtWrWrFm2YZ7c3d311VdfJfr5v/rqq7YeK2PHjtX+/fuTHCc+Pl5fffWVrQdI27ZtM3yukLR+lh06dLDN6TFx4kTt2rUr2TgHDRpku0bbt2+v3LlzZ2mcRiRcxzExMTp16lS6jvH000/bCh4zZszQqVOn5ObmpmbNmtl9rBEjRtjmhBg4cKDmzZuX4lBp4eHhGjhwoDZt2iTpfiHxww8/NHSea9euac6cOXJzc9NHH32UZH3lypUl3e+Z9WCvmWPHjtmKiVWrVk31HEFBQZLuF+TsmW8DAAAgO2KOCgAAgHRq2bKl7Ubu6NGjFRISonr16ilv3ry6dOmS1q5dq/Xr1ye6iXb37l2zwnV4CcM/RUVF2YZusveJ67Zt22rdunXatGmT/vjjD7Vp00Zdu3ZVpUqVFBcXp7179yogIEC3bt2SdH+y8AfHnU9Njx49tGzZMt25c0fffvutAgMD1bJlSxUrVkx37tzRX3/9pYCAAEVGRsrFxUXvv/9+ov0ThtCRpAkTJqh79+6Kj49XtWrVJEmNGzeWt7e3bt++rQ0bNqh3797q2LGjvL29FRQUpICAAAUHB+uJJ57Q+fPn7crLwwYOHKg9e/boypUrWrBggY4dO6ZOnTqpdOnSunHjhjZt2qRly5YpPj5eFotFX3zxRaIJg43KlSuXJk+erLfeekt///23FixYoPXr16tt27aqWbOmChUqpPDwcAUFBWn58uW2G7dubm4aOXJkkhu9+fLl09dff60PP/xQ4eHh6ty5s1577TU1atRI+fLl09mzZzVv3jzbsE9PPvmkrSiVkQoUKCB3d3fFxMRo5cqVqlu3rry9vVWqVCnlz59f3t7eGjFihD7++GNFR0frnXfe0auvvqomTZrI29tbwcHBmjNnjo4cOSLp/iTaqfXUSa+EScgl6eeff5afn5/c3NxUoUIFw0WRB+eBOHjwoJ5++ul0xdKiRQtNmjTJ9rtdu3btdBWQypYtq//7v/9Tnz59FBMToy+//FJz587Vyy+/rCpVqihv3ry6efOmAgMDtXjxYts8EQULFtSECRNsha60jBs3TpGRkXr99ddVqlSpJOuff/55FSpUSNevX1ePHj3Ur18/RUZG2iZPr1atmvz8/FI8flhYmK1Xnj1zbQAAAGRXFCoAAADSqUmTJnrttde0YMECxcTEaObMmck+ad+uXTuFhYVp48aNunTpkiIiIjL8yensIG/evHr++ee1YcMGSfeffk64iW+UxWLRjz/+qM8//1y//vqrLl68qK+//jrJdm5uburXr5/eeecdw8f29fXV2LFj9eGHH+r27dtat26dbQibB+XOnVvDhw9PMtxQ3bp15eXlpfDwcK1evVqrV6+Wu7u7AgMD5eHhIW9vb/3nP/9Rv379FBMTo40bN2rjxo2JjtGpUyeVLVtWI0aMMBx3cnx8fPTTTz/pgw8+0LFjx3Tw4MFk56vIlSuXvvjiC8Nj+ienZMmSWrJkiYYMGaLNmzcrNDRUM2bMsPWaeViJEiX0zTffpHjztnnz5vrf//6nIUOGKDw8XD/99FOyPVDq1aun7777LlMmKXZ1dVXjxo21du1aXbt2zXYdjRw5Uq+++qqk+0W22NhYDRs2TBEREbbJwR9Wrlw5TZw40fANdHsUK1ZMlSpV0pEjR3Ty5El17txZkjR79mzDN8erVKmiYsWK6fLly9qxY4dee+21dMXSsmVLTZo0ybZsbxHyQQ0bNtS8efP02Wef6eTJkzp16pR++OGHFLevVauWvvnmG8PDK507d05LlixR7ty59cEHHyS7jYeHh0aMGKG+ffvq6NGj6tWrl21d/vz5k/3cedDOnTttc1ikp7cSAABAdkOhAgAA4BF89dVXql27thYvXqwjR47ozp078vT0lK+vr6pWraoOHTro2Wef1aJFi7Rx40bFxMRo/fr1atOmjdmhO6QWLVrYChXNmzdP1zE8PT31/fff6/XXX9fChQu1b98+hYSEyNPTU8WLF9fzzz+vDh066IknnrD72HXq1NHq1as1b9487dixQ2fPntW9e/eUN29e27Fff/11FS1aNMm+RYoU0axZszR69GgdPnxYUVFRKly4sK5cuWJ7Yrtp06ZatWqVpk+frh07dujatWvKly+fqlSpok6dOqlBgwbJ3pRPjxIlSmjp0qVauXKl1qxZo8OHD+vmzZtyc3NTyZIlVa9ePb355psZMnZ+oUKFNGnSJP3111/67bfftH//fgUHB+vu3btydXVVwYIFVblyZTVr1kzNmzdPcxic1q1bq1atWvrpp5+0bds2XbhwQVFRUfL19VWFChXUrl07vfDCCxk+58ODRo4cqYIFC2rjxo0KDQ2Vt7e3bt68mWibNm3aqG7dupo7d65+//13nT9/3na9PP3002rZsqXatWuXqcP+TJo0Sd9995127typ27dvK3/+/IkmcU6LxWJRmzZtNGnSJG3fvl2RkZHp6l2TMPxTcHCw3N3d0zXs04OqVq2qFStWaMuWLVq/fr0OHz6sK1euKDw8XLly5ZKvr6+qV6+uNm3a2D1HyY8//qjY2Fh17949UU+ohzVu3FizZs3SmDFjdOjQIXl4eKhu3br697//nWwvjAclFCGfeuqpJMPEAQAA5EQWa0oDegIAAAAAcryQkBA1bdpUkZGRGj169CP1hsD9uTPq1aun8PBwffvtt2rbtq3ZIQEAAJiOybQBAAAAACkqXLiwOnToIOn+XBd4NL/88ovCw8NVsmRJ28T2AAAAOR2FCgAAAABAqnr27CkPDw/t2bNHx44dMzscp2W1Wm3Dt7377rtyc2M0ZgAAAIlCBQAAAAAgDY8//rjeffddSdK4ceNMjsZ5/fbbbzp16pQqVaqkV155xexwAAAAHAZzVAAAAAAA0hQbG6uOHTvq6NGjWrBggfz9/c0OyanExMTopZde0qVLl7R06VL5+fmZHRIAAIDDoEcFAAAAACBNbm5u+vbbb+Xu7q4RI0aIZ97sM3v2bAUHB6tPnz4UKQAAAB5CjwoAAAAAAAAAAGAaelQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAadzMDgBA5rp48aKaNGmS7DqLxaLHHntMRYsW1QsvvKCuXbvKx8cniyN0XD///LOGDx+ur7/+Wh06dDA7HACAg6GNNe7vv//WjBkz9Pvvv+vy5cuSpBIlSqhhw4bq3r27ChYsaHKEAABHQztrXHBwsKZMmaKdO3fq+vXreuyxx+Tv768333xT9erVMzs8ADDEYrVarWYHASDzPPjHnZ+fn/LmzWtbFxcXp7CwMF28eFGxsbEqUKCAZs+erfLly5sVrsM4dOiQunbtqnv37lGoAAAkizbWmD///FPvv/++bt++LVdXVz3xxBOKj4/XxYsXFRcXp8KFC2vatGl6+umnzQ4VAOBAaGeN+f3339WnTx9FRkYqd+7cKlWqlEJDQ3Xt2jVJUvfu3TVw4ECTowSAtFGoALK5B/+4CwgIUK1atZJsc/PmTQ0aNEhbtmzRk08+qdWrV8vFJeeODLdnzx717dtXYWFhkkShAgCQLNrYtN2+fVvNmzdXaGionn/+eY0cOVJFihSRJF24cEGffvqpAgMDVaJECf3222/y9PQ0OWIAgKOgnU1baGioWrRoobCwMLVu3Vpffvml8uXLJ0n69ddfNXDgQMXFxWnMmDFq3ry5ydECQOpyzqc3gBQVKFBAo0aNkoeHh4KDg7V9+3azQzJFVFSUxo4dq27dutmKFAAAPIqc3sYuXbpUoaGhKlKkiH788UdbkUKSSpYsqfHjx+uxxx7TxYsXtWbNGhMjBQA4o5zezi5evFhhYWEqXry4Ro0aZStSSNK//vUv2wN3P//8s1khAoBhFCoASLr/B165cuUkSSdPnjQ5mqx37tw5NW/eXOPGjZMk9evXT8WLFzc5KgBAdpCT29g9e/ZIkho1apRoyI4EPj4+ql69uiTpr7/+ytLYAADZQ05uZ0uUKKGXXnpJnTp1koeHR5L1CUNhJcwPBQCOjMm0AdjExsZKkvLkyZPsupUrV2rNmjU6cuSIbt26JTc3NxUpUkS1atVSt27dVLp06WT3W7ZsmRYtWqSzZ88qPj5elStXVs+ePeXu7q4uXbqoZs2amjNnTprx7dmzR126dDH8fl555RWNGjXK0LZ///23rly5omrVqmno0KGqXLmyFi1aZPhcAACkJqe2se+//76aN2+ebPwJEkaijY+PN3x+AAAelFPb2VatWqlVq1Yprj98+LAkqVSpUobPDQBmoVABQJJ0/vx5nTx5Ui4uLnr++ecTrYuMjFSvXr1sT0UWL15cfn5+unHjhoKDgxUcHKxff/1Vc+fOVcWKFW37RUVF6aOPPtLmzZsl3f/jKE+ePPrzzz+1e/duNWvWzK4Y8+XLp2eeecbw9k8++aThbX19fTVlyhQ1aNDArpgAAEhLTm5jq1atqqpVq6a4PjQ0VHv37pUkPfXUU4bPDwBAgpzczqbk9u3bCggI0NKlS+Xm5qaePXs+0vEAICtQqABysLi4ON2+fVv79+/Xt99+q/j4eL333ntJhjyaOnWq9uzZowIFCmjKlCmJbjgcOnRIvXv3VkhIiCZNmqQxY8bY1o0fP16bN29W/vz5NWbMGNvkZ1evXlX//v21fv16u+KtWLGi5s+f/wjvOGWlSpXiKRMAQIahjTXmm2++UUREhHLnzs0knwAAw2hnk7d27VqNHTtW586dU3R0tIoWLaovvvhCzz33XKafGwAeFYUKIAdJq6tpz5491a9fvySv79y5Uy4uLurTp0+SpyKrVq2qN954Q2PGjNGJEydsr9++fVszZ86UJH377be2P+wk6fHHH9fEiRPVsmVLhYSEPMI7AgDAMdDG2m/ChAlauXKlJKl3794qWLCgyREBABwV7awxhw4dSjRPR1hYmDZv3qxnn3022bmiAMCRUKgAchA/P79Ef5zEx8fr3r17tqctZs2apYiICH322WdydXW1bTd//nzFxMTIYrEke9zcuXNLut+tNsHWrVsVHR2tYsWKqWHDhkn2yZcvn9q1a6fJkydn0LsDAMA8tLH2GTdunMaOHStJatKkCUNSAABSRTtrTOfOnfXBBx/o7t272rFjh7777jv9/PPPOnz4sBYsWCA3N24DAnBcfEIBOciQIUMSPQ2SIDo6WsuWLdOIESP0008/KS4uTl988UWibdzd3RUWFqYDBw4oODhYFy5cUHBwsIKCgnT9+nVJiSfBTHiKo3z58inGU7lyZbviP3r0qEaMGGF4+wYNGui9996z6xwAAKQHbawxsbGx+uqrr7RgwQJJUv369TV69OgUbyABACDRzhrl6+srSfLy8tIrr7wif39/tW3bVocPH9aKFSvUrl07u48JAFmFQgUAeXh46LXXXlNISIjGjh2rhQsX6t1331XRokUlSXfv3tU333yjX3/9VTExMbb93N3dValSJVWoUEG///57omPevHlT0v0/kFJib9fTO3fuKDAw0PD2zDkBADAbbew/7t69qw8//FA7duyQJLVq1UrffvutPDw87D4WAAAS7WxaypQpo2bNmmnlypXau3cvhQoADo1CBQCbJk2aaOzYsYqLi9PRo0dtf9z17t1be/bsUa5cufTWW2/J399f5cqVU6lSpeTu7q6FCxcm+eMuoQvt3bt3UzzfvXv37IqvVq1aOn78uJ3vCgAA8+X0Nvbvv/9Wz549bWOA9+jRQwMGDKAnBQAgQ+TUdvbWrVu6ePGiihUrJh8fn2S3SZhg3BHn1ACAB1GoAGDz4M0Cq9UqSTpw4ID27NkjSZo8ebJq166dZL+///47yWt+fn6SlGhSsocdO3bskeIFAMBZ5OQ29urVq+rcubPOnz8vV1dXDR06VG+88YbZYQEAspGc2s62b99eFy5c0CeffJLifE+XLl2SdH8icABwZC5mBwDAcWzdulXS/T/yEsbcvHjxom19cuNwRkREaNWqVZKkuLg42+sNGzaUu7u7rly5ou3btyfZLyoqSsuXL8/I8AEAcFg5tY2Njo7W+++/r/Pnz8vd3V3/93//R5ECAJDhcmo7W69ePUnS4sWLEw1tleDixYvasGGDJKlx48ZZGhsA2ItCBQBZrVatW7dOkyZNkiQ1b97cNglXmTJlbNuNHz8+0R8/p06dUs+ePRUcHCzp/h96CQoVKqROnTpJkgYNGpRoPM6bN2+qX79+if5wBAAgO8rpbezUqVN15MgRSdLw4cPVrFkzkyMCAGQnOb2dfeedd5QrVy4FBwerf//+Cg0Nta07evSoevToocjISD333HNq0qSJiZECQNos1oQ+cQCypYsXL9r+IPHz80sy6VdsbKwuXbqkGzduSJIqVaqk6dOnq0CBArZt+vXrp9WrV0uS8ufPrxIlStjGwpTuP8WRMDHmvn37bOeIjIxUz549tXfvXknSk08+qTx58ujkyZOKjY1VxYoVdfjwYdWpU0ezZs3KvCSkU+PGjXXp0iV9/fXX6tChg9nhAAAcDG1s6qKjo1W/fn2FhYXJzc1NVatWTXX7Bg0a6L333sui6AAAjo521pjNmzfr448/VkREhDw8PFS6dGlFRUXZijDVqlXTxIkTU5zDAgAcBXNUADlIcmNsenp6ysfHR40aNdKLL76oNm3ayM0t8UfDDz/8oLp162rhwoU6f/68jh8/rgIFCqhRo0Z6/fXX1bBhQzVq1EiXL1/Wpk2b1KZNG0lSrly5NGPGDP30009asWKFgoODZbFY9Oyzz+r999/X/v37dfjwYeXKlStL3j8AAJmFNjapEydOKCwsTNL9m0kPPpGanFKlSmVFWAAAJ0Q7m7JGjRrpl19+0fTp07V9+3adOXNGuXLlUo0aNdSmTRu9+uqrcnd3NztMAEgTPSoAmObbb7/VjBkz1LFjR40YMcLscAAAyDZoYwEAyDy0swCQ8ZijAkCmOHv2rBo2bKiuXbsqOjo6yXqr1arff/9dklSxYsWsDg8AAKdFGwsAQOahnQUAc1CoAJApSpYsqaioKO3atUvff/+9IiMjbevu3LmjL774QidPnpSPj49atGhhYqQAADgX2lgAADIP7SwAmIOhnwBkmjVr1ujf//634uLilCdPHj3xxBOKi4vT+fPnFRkZKW9vb40dO1a1a9c2O1QAAJwKbSwAAJmHdhYAsh6FCgCZ6syZM5o1a5b27dunK1euSJKKFi2qBg0a6K233lKxYsVMjhAAAOdEGwsAQOahnQWArEWhAgAAAAAAAAAAmIY5KgAAAAAAAAAAgGnczA7A0Zw9e1aRkZHKlSuXSpcubXY4AABkG7SxAABkDtpYAADg7ChUPCQyMlLh4eFmhwEAQLZDGwsAQOagjQUAAM6OoZ8AAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMI2b2QEAAAAAAAAAADJebGysAgICFBQUpAoVKqhLly5yc+OWMBwPVyUAAAAAAAAAp8INeGPmzJmjuXPnSpICAwNlsVjUrVs3k6MCkmLoJwAAAAAAAABOJeEGfGBgoObOnas5c+aYHZJD2r17d6rLgKOgUAEAAAAAAADAqXAD3pioqKhUlwFHQaECAAAAAAAAgFPhBjyQvVCoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMI2b2QEAAMwVGxurgIAABQUFqUKFCurSpYvc3GgekkOuAAAAAAAAMh53VwAgh5szZ47mzp0rSQoMDJTFYlG3bt1MjsoxkSsAAAAAAICMx9BPAJDD7d69O9Vl/INcAQAAAAAAZDx6VABADhcVFZXqMv5BrgAAAAAgcwzfuFDRcbGGtw+5dzvJ8uB18wzt6+Hqpi+bdLQrPkdBnpBdUagAAAAAAAAAYKrouFi7bsBbZU2ybM/+6eEI8xY6Q54kx8gVnAtXBwAAAAAAAACkgXkLjSNXsBdzVAAAAAAAAABAGpi30DhyBXvRowIAAAAAYCqGhwAAOAPmLTSOXMFe/OUHAAAAAJmEG/DGMDwEAMBeLg+1pw8v4z7yBGfB0E8AAAAAkEkSbsAHBgZq7ty5mjNnjtkhOSSGhwCA+2JjYzVjxgwNGDBAM2bMUGxs5k967Ky8y5RIdRn3kSc4C0poAAAAAJBJkrsBT0+BpBgeAgDuo4eZcb51/CVJ966EKE/RwrZlI9xdXTMrLIdDnuAsKFQAAAAAQCbhBjwAwB4UuI2zuLqoaP3qZofh8MgTnAWFCgDIZoZvXKjoOOPdg0Pu3U6yPHjdPEP7eri66csmHe2Kz5GQKwAAAACOhAJ31guZ9aWsMdGGto27FZJk+drUzw3ta3H3UOGuw+2Oz1HYkycpZ+cK6UOhAgCymei4WLtuvltlTbJsz/7OjFwBAAAAQM5mjYmWYmOMbp102eC+D+/pbOzLk5STc4X0oVABAAAAAMiRYmNjFRAQoKCgIFWoUEFdunSRmxv/JgMAAGQ1/gIDAJiCGwMAAGQO2ljjmLQWAADAMfDXKgDAFNwYMIabTQDgWLJqfqNHmdvIEdpYZ5kHiklrAQD28HB1SXUZ/yBXsBd3OgAApuDGgDGOcLMJAPAPZ5jfyBHaWGfIk8SktQAA+1T3fUzBtyISLSN55Ar2olABINviSXTH5ow3Blweun4eXs4MjnCzCQDgXJyxjQUAwBm0q1hMknQy9J7K+eSxLSMpcgV7cccOQLbFk+jIaN5lSijiWmii5czGzSYAAAAAmY0H/Yxxc7GoY+XiZofhFMgV7MUnDoBsiyfRjTGjl4Cz8q3jL0m6dyVEeYoWti0DAJAS2lljyBMAmIsH/QCYzWn++tu9e7fefvvtFNd7eXlp//79WRgRAEfHk+jGmNFLwFlZXF1UtH51s8MAADgR2lljyBMAmIsH/QCYzWkKFUeOHJEkValSRU8++WSS9Z6enlkcEQBkD/QSAADYi+EhjEtvO+vu6pqZYTmcR/l7JKflCoBzGb5xoaLjYg1vH3LvdpLlwevmGdrXw9VNXzbpaFd8CXjQD4DZnOa/iYRCxUcffaTnn3/e5GgAIPuglwAAwF4MD2Ec7awx5AlAdhUdF2tXocIqa5Jle/YHAGfldIWKypUrmxwJAAAAkLMxPETWCpn1pawx0Ya3j7sVkmT52tTPDe1rcfdQ4a7D7YrPkWRVrpw9TwAAAI7GKQoVd+/e1blz51S8eHEVKFDA7HAAAP8fQy0YR64AZCcMD5G1rDHRUmyMPXskXTa4/8N7OpusypWz5wkAAMDROEWhIigoSFarVaVKldKECRO0evVqnT9/Xnnz5lXdunXVu3dvlS5d2uwwAQAAgHRhzgcAAAAAOZlT/PeTMOzTzp07tW/fPj333HMqWrSojhw5ohUrVmjDhg2aNGmSatWqlWHntFqtiouLy7DjAUg/1///JLpZk5A5y2eBq8lP7Js1LEV6fj7OlKusyFNW54M2Fkhq9uzZmjfvfhsVGBgoq9Wqrl27Zvp5zf48tPezIDY2VnPmzNGxY8f09NNPq3PnzllW0DE7V2ZwxjbWDLSxAJJj9uehvZ8FVqs1yXJWfZ6YnSsz0MYal1Kucmo+sjOnKlQ888wzGjNmjAoXLixJio6O1qhRozR37lz169dP69evV968eTPknBERETpw4ECGHAtA+rm4uKh69fsTK5o1CdmhQ4cUHx9v935Z6cE8mcWsYSns/fk4X64yP081atQwGEvGoI0FktqyZUuS5WrVqmXqOR3h89Dez/C1a9dq48aNkqT9+/fr2rVrat68eWaFZ+MIubKHh6tLqstGOWMba6+MyBVtLICHmfV5+OBws/bexLVYLEmW03MjeP/+/dm+7cgIOaGNzSgp5Sqr21hkPqcoVHzzzTfq3bu3ChcunKgQ4eHhoc8//1yBgYEKCgrSihUr1KlTJxMjBQAAAOwXExOT6nJmM6vXor2CgoKSLGdFocLZVPd9TMG3IhItI3nkCgAAwDE4RaHCw8MjxTkoXF1d1bBhQwUFBemvv/7KsHPmzp1b5cuXz7DjAXBeVatWNTsEpIKfjzGOlCfaWCApT0/PJMuZ3aPiQWb1WrT3s8nFxSXJclbmyVm0q1hMknQy9J7K+eSxLdvLkdqOzJIRuXKkPNHGAkhg1tC8jvSZ6MjIk3HkKudwikJFWooWLSrpfjfXjJLeLm4Ash8+CxwbPx9jHClPtLFAUhk13IKzMWtYiuzOzcWijpWLP/JxckJuMyJXjpQnficAJDBraF4+g4whT8aRq5wjfYOVZqHo6GgNGzZMH3zwgW7cuJHsNleuXJH0T8ECACTJ5aHJNR9ehrkyavxsAEDWo40FACBz0MYCyKkc/q6Qh4eHtm/frg0bNtgmzntQdHS0fvvtN0nSCy+8kNXhAXBg3mVKpLoMcz08BjRjQiePgg4AR0QbCwBA5qCNBZBTOUVZtlOnTvrvf/+rH374QVWrVtXTTz8tSYqMjNSQIUN07tw51axZU3Xq1DE5UgCOxLeOvyTp3pUQ5Sla2LYMx5BR42dnd0zyCcAR0cYCAJA5aGMB5FROUajo2rWr9u/frw0bNujVV19V9erVVaBAAQUGBur69esqU6aM/ve//5kdJgAHY3F1UdH61c0OAynIqPGzszsKOgAcEW0sAACZgzYWQE7lFIUKNzc3jRs3TosXL9bixYt15MgRxcXFqWTJknrjjTfUvXt3eXl5mR0mAAAZjoIOAAAAkH6xsbEKCAhQUFCQKlSooC5dusiNeR8AwOE4zSezxWJRhw4d1KFDB7NDAQAAAFIVMutLWWOiDW8fdyskyfK1qZ+nuZ/F3UOFuw63Oz4AAHKKOXPmaO7cuZKkwMBAWSwWdevWzeSoAAAPc5pCBQAAAOAsrDHRUmyMPXskXTaw/8N7OQN3V1ezQwAAp0cvAeN2796dZJlCRVIeri6pLgNAZqMVAwAAAAAAcCL0EjAuKioq1WXcV933MQXfiki0DABZiUIFAAAAAFNk1RBZEsNkAche6CWAjNauYjFJ0snQeyrnk8e2DABZhUIFAGQwumEDAGBMVg2RldyeAODMcnIvAXuL3K53byRZpsidlJuLRR0rFzc7DAA5GHfOACCD0Q0bAJwXxWYAABybvUXu6o97K/hmeKJlitwA4Hj4rwsAMhjdsAHAeVFsBgAgc5j1MABDGgGAc6BQAQAZLCd3wwYAZ0exGQCAzGHWwwAMaQQAzsHF7AAAOIfY2FjNmDFDAwYM0IwZMxQbG2t2SAAAZDiKzQAAZI7kHgYAACABPSoAGJLThsJwd3U1OwQAQA7i4eqS6jIAAM6OhwEAAKmhUAHAEIbCAAA4o+EbFyo6zngvwBvR4UmWB6+bZ2jfPO6eGtLoVbviS1Dd9zEF34pItAwAAAAAOQWFCgCG5OSnX0JmfSlrTLTh7eNuhSRZvjb1c0P7Wtw9VLjrcLviAwCkLDou1q5CRb7SxRV+9UaiZaP7P0pvPCb6BAAAAJCTUagAgDRYY6Kl2Bh79ki6bHD/h/cEAGQt3zr+kqR7V0KUp2hh23JmY6JPYxgiCwAAAMieKFQAAAAA/5/F1UVF61c3OwykgCGyAAAAgOyJQgVyvNjYWAUEBCgoKEgVKlRQly5d5ObGrwYAAICjYYgsANmZPUPOMtwsACC74W4scrw5c+Zo7ty5kqTAwEBZLBYmicYjYVgKAAAyB0NkAcjO7BtyluFmAQDZC3fPkOPt3r071WVHFBsbqxkzZmjAgAGaMWOGYmONTxKKzPfwMBQMSwHAbLQbAAAAAABHRo8K5HhRUVGpLjuijOoFQtfizMGwFAAcDb0HAQBARhu+caGi44w//BBy73aS5cHr5hnaN4+7p4Y0etWu+AAAzoVCBeCEkusFkp4bTnQtzhwMSwHA0WRUuwEAAJAgOi7WrkKF9aH/DK2yGt7f3dXVrtgAAM6HoZ8AJ+SMvUAAAOah3QAAAAAAODIKFQAAAAAAAAAAwDQUKgAY4uHqkuoyAAAAACBr8P8ZACC7YY4KwAE4wyRk1X0fU/CtiETLAAAAAJDTxcbGKiAgQEFBQapQoYK6dOkiN7fMvd3ijP+fuTyUk4eXAQA5G60C4ACcYRKydhWLSZJOht5TOZ88tmUAAAAAyMnmzJmjuXPnSpICAwNlsVjUrVu3TD2nM/5/5l2mhCKuhSZaBgAgAYUKAIa4uVjUsXJxs8MAADgRM54wBQAgq+3evTvJcmYXKpzx/zPfOv6SpHtXQpSnaGHbMgAAEoUKwCnRZRYA4AzMeMIUAICsFhUVleoy7rO4uqho/epmhwEAcFDc3US2EzLrS1ljog1vH3crJMnytamfG9rX4u6hwl2H2xVfRqDLLADAnvmNHmVuIw9XN33ZpKPd8UnmPGEKAAAAAHA+FCqQ7VhjoqXYGHv2SLpscP+H98wqdJkFANgzv9GjzG30KHjCFAAAAABgBIUKwAnRZRYAAAAAMoc9vRalR+u5mMfdU0MavWpXfAAAZEcUKgAAAAAAAP4/e3otSo/Wc9Hd1dWu2AAAyK5czA4AAAAAjosbKAAAAACAzEahAjmeh6tLqssAAAAAAKTExc0t1WUAAJA2Wk/keNV9H1PwrYhEywAAZCcZdQMlZNaXssZEG94+7lZIkuVrUz83tK/F3UOFuw63Kz4AAMzgXaaEIq6FJloGAAD2oVCBHK9dxWKSpJOh91TOJ49tGQCA7CKjbqBYY6Kl2Bh79ki6bHD/h/cEAMBR+dbxlyTduxKiPEUL25YBAIBxFCrgMGJjYxUQEKCgoCBVqFBBXbp0kVsWdJl1c7GoY+XimX4eAADMwg0UAAAyj8XVRUXrVzc7DAAAnBqFCjiMOXPmaO7cuZKkwMBAWSwWdevWzeSoAABwftxAAQAAAAA4MmYNhsPYvXt3qssAAMC5eLi6pLoMAAAAAIBEoQIOJCoqKtVlAADgXKr7PpbqMgAAAAAAEkM/AQAAIJO0q1hMknQy9J7K+eSxLQMAAAAA8CAKFcg0wzcuVHRcrOHtQ+7dTrI8eN08Q/vmcffUkEav2hUfAADIXG4uFnWsXNzsMAAAAAAADo5CBTJNdFysXYUKi5trkmWj+7u7uqa9EQAAAAAAAADA4TBHBRyGd5kSqS4DAAAAAAAAALIfelTAYfjW8Zck3bsSojxFC9uWAQAAAAAAAADZF4UKOAyLq4uK1q9udhgAAAAAAAAAgCzktEM/ffjhhypfvryWLl1qdigAAAAAAAAAACCdnLJQsWjRIq1du9bsMAAAAAAAAAAAwCNyukLF2bNnNXLkSLPDAAAAAAAAAAAAGcCpChXR0dHq37+/XFxcVLFiRbPDAQAAAAAAAAAAj8ipChWjR4/WkSNHNGzYMBUtWtTscAAAAAAAAAAAwCNymkLFzp07NXPmTLVu3Vovv/yy2eEAAAAAAAAAAIAM4GZ2AEaEhobq008/la+vr7744ossOafValVcXFyWnCu7cXV1NTsEU6TnesmJuSJPxtmbK/JkXE7MVWp5yup80MY+Gq5fY8iTMTkxTxK5Moo8GUMbm31w/RqTE/Mk8f+ZUVxTxpAn41LKVU7NR3bmFIWKzz77TDdu3NDs2bPl7e2dJeeMiIjQgQMHsuRc2YmLi4uqV69udhimOHTokOLj4w1vn1NzRZ6MsydX5IlrKi2p5alGjRpZGgttbPpx/RpDnozJqXmSyJVR5MkY2tjsgevXmJyaJ4n/z4zimjKGPBmXUq6yuo1F5nP4oZ/mzp2rzZs3q0ePHqpZs6bZ4QAAAAAAAAAAgAzk0D0qTp48qW+//VaVKlXSRx99lKXnzp07t8qXL5+l54Rzq1q1qtkhOAXyZBy5MoY8GeNIeaKNhb0c6fp1ZOTJOHJlDHkyxpHyRBsLeznS9evoyJUx5MkY8mQcuco5HLpQ8f333ysqKkq5cuXS4MGDE607cuSIJGnhwoXauXOnnnvuOb322msZdm6LxcJYZ7AL14sx5Mk4cmUMeTLGkfJEGwt7cb0YQ56MI1fGkCdjHClPtLGwF9eLceTKGPJkDHkyjlzlHA5dqAgPD5ck7du3T/v27Ut2m/3792v//v1yc3PL0EIFAAAAAAAAAADIfA5dqJgzZ06K63r37q2NGzfqP//5j9q1a5eFUQEAAAAAAAAAgIzi8JNpAwAAAAAAAACA7ItCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBqHnqMiNRMmTDA7BAAAAAAAAAAA8IjoUQEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAadzMDgAAAAAAAAAAgKx07NgxLV68WLt27dLVq1cVFRUlHx8flStXTg0bNlT79u2VK1cus8PMcOXLl5ckzZw5U3Xr1jU5mn9QqAAAAAAAAAAA5BhjxozRxIkTFR8fr7x58+qJJ56Qu7u7QkJC9Pvvv+v333/XtGnTNH78eFWqVMnscHMEChUAAAAAAAAAgBxhyZIlGj9+vLy8vPSf//xHzZo1k6urq2396dOn9dlnn+nAgQPq0aOHfvvtN/n4+JgYcc7AHBUAAAAAAAAAgBxh0qRJkqRPP/1ULVq0SFSkkKSyZctq4sSJKliwoG7evKmAgAAzwsxxKFQAAAAAAAAAALK9sLAwnT9/XpLk7++f4nY+Pj5q2rSpJOnQoUNZEltOx9BPAAAAAAAAAIBsz83tn9vhmzdvVsWKFVPctm/fvurSpYsKFiyY6PXY2FitXLlSa9as0ZEjR3Tr1i25ubmpSJEiqlWrlrp166bSpUsn2qdz587au3evZs6cqbx582rixIkKDAxUVFSUSpcurbfffltt27aV1WrV4sWLNX/+fJ05c0aurq7y9/fXhx9+qGrVqiU6ZuPGjXXp0iUtX75cV69e1aRJk3T8+HF5eHiofPny6tKli63YYtT169c1Y8YMbdmyRZcuXZKLi4vKlCmj1q1b680335Snp6ddx7MHhQoAAAAAAAAAQLaXJ08ePfPMMwoMDNTYsWN14cIFvfrqq3rmmWeSDAFVuHBhFS5cONFrkZGR6tWrl/bs2SNJKl68uPz8/HTjxg0FBwcrODhYv/76q+bOnZtsEWTNmjVasmSJPDw89OSTT+ry5cs6evSoBg4cqPDwcAUGBurXX39VwYIFVbp0aZ08eVI7duzQH3/8oUWLFunpp59OcswlS5Zozpw58vDwULly5XT9+nXt2bNHe/bsUefOnTVkyBBDudm3b5969+6tW7duyd3dXU8++aSsVquOHDmiw4cP65dfftG0adOS5CSjMPQTAAAAAAAAACBHGDp0qLy8vGS1WrVs2TK99dZbqlmzpnr16qUpU6bo4MGDio+PT3bfqVOnas+ePSpQoIAWLVqkTZs2acmSJdqyZYsWLVqkwoULKzw83DYPxsMWLFigJk2aaNu2bVq2bJm2bdum+vXrS5JGjBihdevW6bvvvtPOnTu1bNkyrV27VkWLFlV0dLRmz56d7DHnzJmjunXrasuWLVq6dKm2bt2qESNGyM3NTXPmzNHKlSvTzMnVq1dtRYqOHTtq586dWrlypVatWqV169bJ399fx44dU79+/YwlOR0oVAAAAAAAAAAAcoSKFStq0aJFqlGjhu21u3fvauvWrfrhhx/UsWNH1a9fX6NHj1ZERESifXfu3CkXFxf16dNHVatWTbSuatWqeuONNyRJJ06cSPbc+fPn16hRo5QvXz5Jkqenp7p16yZJio+P1zvvvKOXX37Ztn3x4sXVvn17SdKRI0eSPWaxYsU0btw42xBVFotFHTt2VI8ePSRJ48aNSzMn06dP161bt9S4cWONGDFC3t7etnVPPPGEJkyYoLx58+rPP//U1q1b0zxeelCoyMZiY2M1Y8YMDRgwQDNmzFBsbKzZIQEAAAAAAACAqZ566inNmzdPy5cvV58+fVS9enW5u7vb1t+4cUOTJk1SmzZt9Pfff9tenz9/vg4dOqTXX3892ePmzp1b0v0hopJTq1YteXl5JXqtePHitu8bNGiQZJ8iRYpIul9MSU7Hjh2VJ0+eJK8nxHj27FmdOXMm2X0TbNiwQZLUpk2bZNcXKlRI9erVk3R/bo/MwBwV2dicOXM0d+5cSVJgYKAsFoutQgcAAAAAAAAAOVmFChVUoUIF9e3bVxEREQoMDNT27dv1yy+/6MaNGzp//rw++ugjLViwwLaPu7u7wsLCdODAAQUHB+vChQsKDg5WUFCQrl+/LkkpDh3l6+ub5LUHCyQ+Pj5J1j84AXhyHu7ZkaBYsWLKly+f7ty5o+DgYJUpUybZ7e7du6dLly5JkiZMmKCAgIBkt0vYJq2iR3pRqMjGdu/enWSZQgUAAAAAAAAAJJY7d27Vq1dP9erV00cffaTPPvtMq1at0oEDB3TkyBFVqlRJd+/e1TfffKNff/1VMTExtn3d3d1VqVIlVahQQb///nuq50iNxWKxO+7HHnssxXVeXl66c+eObt++neI2D/bUSGnIqgfduXPHvgANolCRjUVFRaW6DAAAAAAAAAA5xbBhw7R792698sorev/991PcLleuXPrqq6+0bt06xcTE6OzZs6pUqZJ69+6tPXv2KFeuXHrrrbfk7++vcuXKqVSpUnJ3d9fChQtTLVRkhofn0XhQQhEiYf6K5DxYPPn111/l5+eXccHZgTkqAAAAAAAAAADZXlRUlM6dO2ebkyE1efPmtc394OPjowMHDmjPnj2SpMmTJ2vQoEFq2bKlnnrqKdvwTQ/OZ5FVUuoFcf78ed27d0/S/Tk5UuLt7a1ChQpJkk6dOpXidsePH1dQUJDCwsIeIdqUUagAAAAAAAAOITY2VjNmzNCAAQM0Y8YMxcbGmh0SACAbSZgs+vDhw1q6dGmq227fvl23bt1S/vz55e/vr4sXL9rWVa5cOcn2ERERWrVqlSQpLi4uA6NO3dKlS5OdE2P+/PmSpGrVqqlo0aKpHqNhw4aSpJ9++inZY925c0ddunRR27ZtNXv27EcPOhmZUqiIi4vTunXr9N1332nYsGEaPXq0du7cmRmnAgAAOZhZNzO4iQIAQOaYM2eO5s6dq8DAQM2dO1dz5swxOyQAQDZSr149NW/eXJI0ZMgQffPNN4kKENL9XhdLlixRv379JEn9+vVTnjx5Ek1GPX78+ERzVJw6dUo9e/ZUcHCwpNSHY8pohw8f1tChQ23njI+P108//aRZs2ZJkj7++OM0j9GrVy95eXlp3759GjBggEJDQ23rLl26pF69eunWrVvKly+f3nzzzUx5Hxk+R0VISIh69OihkydPymq12l6fMmWK6tWrp/Hjx8vT0zOjTwsAAHKghJsZkhQYGCiLxaJu3bpl2/MCAJDd7d69O8kybSwAICN9//338vLy0vLlyxUQEKCAgAAVK1ZMBQsWVFRUlIKDgxUdHS13d3f1799fb7zxhiSpYsWKatmypVavXq0ZM2Zo6dKlKlGihG7dumUrdtSrV087duzQvXv3dPfuXeXNmzfT34+fn58WL16s1atXq0yZMvr7778VEhIiFxcXDR48WLVr107zGKVKldKPP/6ojz/+WCtXrtTatWv11FNPKSYmRsHBwYqNjZWXl5emTJmS6nwXjyLDCxWff/65zpw5o7feekvPPfec8uXLp6tXr2rhwoXasWOHRo8erUGDBmX0aXOEkFlfyhoTbXj7uFshSZavTf3c0L4Wdw8V7jrcrvgAAMhqZt3M4CYKAACZIyoqKtVlAAAelYeHh0aNGqU333xTv/32m/bs2aOrV6/q2LFjyp07t0qXLq369eurffv2iXpRSNIPP/ygunXrauHChTp//ryOHz+uAgUKqFGjRnr99dfVsGFDNWrUSJcvX9amTZtsQ01lpi5dusjLy0szZszQiRMn5O3trebNm6tHjx7y9/c3fJwGDRpo1apVmjVrln7//XedPXtWcXFxKl68uOrVq6fu3burZMmSmfY+MrRQcffuXW3fvl3vvPOO/v3vfyda17x5czVu3FgrV67McYWK2NhYBQQEKCgoSBUqVFCXLl3k5mZ/6q0x0VJsTNob/rNH0mWD+z+8JwAAjsismxncRAEAAAAA51alShVVqVLFrn1cXV3VsWNHdezYMcVtNm/enOS11IYyLFGihI4fP57i+nbt2qldu3apxtW6dWu1bt061W0SpHauokWLavDgwRo8eLChY2Uku+ao+P7773Xnzp0U19+7d0/x8fEqUaJEknW5c+eWj49PqvtnV4yxCQAAAAAAAABA8uwqVEybNk1NmzbVrFmzEk0WkqBw4cLy8fHRjBkzdPbsWdvrcXFxmjVrlk6fPm13lSo7SG54iKzg4eqS6jIAAAAAAMmJjY3VjBkzNGDAAM2YMUOxsbFmhwQAALIxu+5cz5o1S8WLF9eoUaPUokULrVixIvHBXFw0YMAAnTt3Tq1atVLt2rXVoEED+fv769tvv5Wnp6c+/fTTDH0DzsCs4SGq+z6W6jIAAAAAAMlhZAAAAJCV7JoooXbt2lq6dKl+/fVXjR49WgMHDtTMmTP1ySefqF69epKkV155RWXKlNHkyZN19OhRXb9+Xfnz59dzzz2n9957T+XLl8+UN4Kk2lUsJkk6GXpP5Xzy2JYBAHBUwzcuVHSc8Sc2Q+7dTrI8eN08Q/vmcffUkEav2hUfAAA5RXIjA3Tr1s3u44TM+vL+fIsGxd0KSbJ8bernhva1uHuocNfhdsUHAAAcQ7om0/7Xv/6lFi1aaO7cuZo0aZLeeecd1alTR5988okqVqwof39/TZgwIaNjhZ3cXCzqWLm42WEAAGBYdFysXYUKq6xJlo3u7+7qavuemygAACSWUSMDWGOipdikQ0enskfSZYP7P7wnAADZ2aZNm8wOIUOle9ICd3d3de3aVRs2bFD37t21b98+tW/fXv3799fFixczMkYAAIBkubi5pbpslO0mitGvlG6iGPiypyACAAAAAEBO8MizK+fNm1cDBgzQ2rVr1aZNG61evVotW7bUyJEjdfPmzYyIEQAAIFneZUqkugwAAAAAABzfIxcqEvj6+mrUqFFaunSpatasqYCAADVr1kyTJ0/OssmjAQBAzuJbx1+P166qvKWK6vHaVeVbx9/skAAAwCPwcHVJdRkAAGRPdo+PcPz4cU2YMEH79u3TrVu3bBNl9+7dW+XKldPTTz+t6dOna9euXfruu+80evRozZ07V3379lX79u1lsVgy431kKSb6BADAMVhcXVS0fnWzwwAAABmkuu9jCr4VkWgZAABkf3YVKv766y916dJFERERcnd3V/78+XXr1i2tXr1aW7Zs0dy5c1WxYkVJUp06dbRs2TKtWLFCP/74o4YNG6bZs2fr448/VpMmTTLlzWQVsyb6BAAAjoGnPQEAzsZZHrhrV7GYJOlk6D2V88ljWwYAANmbXf9V//DDD4qMjNTQoUN18OBBbd++XYcOHdLQoUMVERGh77//Psk+bdq00Zo1azRgwACFhISoT58+GRY8AACAGR5+upOnPQEAji7hgTujXyk9cGfoK954QeRhbi4WdaxcXJ+/4KeOlYvLzcX5R2UAAABps6tHxYEDB/TUU0/pzTfftL3m4uKiN998U/Pnz1dgYGCy+3l4eKh79+5q3769Jk+enK5A4+PjtWDBAi1evFinT5+WxWJR2bJl1bZtW73++utyc7N7FCsAAIB04WlPAAAAAAAyjl139z09PRUaGqro6Gh5eHjYXo+OjtbNmzeVK1euVPf39vbWgAED0hXooEGD9MsvvyhXrlx65pln5O7ursDAQI0YMUJr167V9OnTE8UEAACQWRKe9gQAAAAAAI/OrkJFgwYNtGLFCr333ntq3769ChQooNDQUC1YsEChoaFq3759pgT5yy+/6JdfflHx4sX1008/qVix+08t3rx5U926ddPevXsVEBCgd955J1PODwAAAAAAAAAAModdhYrBgwfr4sWL2rlzp3bt2mV73Wq1yt/fXwMHDszwACVp2bJlkqSPP/7YVqSQpAIFCqhXr176+OOPtW3bNoctVLg8NCzVw8sAAAAAADgS/o8FAABZya6/NAoUKKB58+Zp586d2rdvn0JCQuTt7a0aNWqoQYMGcnGxa25uw6ZMmaLg4GCVLFkyybr4+HhJkru7e6acOyN4lymhiGuhiZYBAAAAAHBU/B8LAEDOFBwcrLZt26pDhw76/PPPs+y86Xokom7duqpbt25Gx5IiDw8P+fn5JXn99OnTGjt2rCSpXbt2WRaPvXzr+EuS7l0JUZ6ihW3LAAAAAAA4Iv6PBQBkd8M3LlR0XKzZYRji4eqmL5t0zPTzXL9+Xb1791ZERESmn+thTtl3c+DAgTp9+rQOHz6s3Llza/DgwWrdunWGnsNqtSouLi7Ra66uruk6lsXVRUXrV8+IsEzxcB7Skt48OTt78yTlzFyRJ+P43TOGa8qY1PKU1fnIyDbW2XH9GkOejCFPxpErY8iTMdm1jc1p/8dKXL9G5cQ8Sfx/ZhTXlDHkybiUcpUR+YiOi3WaQkVWCAoK0kcffaRz586Zcv50FyoiIyP166+/6tVXX01xyKdBgwapYsWK6tixo3LlypXuIB909+5dLV++3LZssVh0/vx53bt3T3ny5MmQc0hSRESEDhw4YFt2cXFR9erO+0faozh06JBtiK20kCdjeZJybq7Ik3H87hnDNWVManmqUaNGlsZCG/sPrl9jyJMx5Mk4cmUMeTKGNtYxcf0aQ56M4/8zY7imjCFPxqWUq6xuY7OzsLAwTZkyRQEBAYqOjlaJEiV08eLFLI8jXZNK7Ny5U82bN9ewYcN09OjRZLcJCwvTL7/8ov/85z968cUXtWfPnkcKNIGHh4e2b9+uwMBAzZ49W0888YTmzp2rXr16yWq1Zsg5AAAAAAAAAADI7gICAjRt2jT5+Pho4sSJatu2rSlx2N2jYuvWrfrggw8UGxsri8Wi4OBgVa5cOcl2t2/fVt26dbVr1y5du3ZN77zzjqZMmaI6deo8UsAeHh4qXLiwJKl27dqaOXOm/vWvf+nPP//U1q1b1bBhw0c6foLcuXOrfPnyGXIsZ1e1alWzQ3AK5MkY8mQcuTKGPBnjSHmijf2HI/1cHBl5MoY8GUeujCFPxjhSnmhj/+FIPxdHRp6MI1fGkCdjyJNx5Crz+fr6auDAgerUqZNy5cqlI0eOmBKHXYWK27dva9CgQYqNjVWtWrU0bNgwlS1bNtltS5YsqenTp+vs2bMaPHiwDhw4oE8//VSrV69W3rx5MyR4SSpQoIAaNGigxYsX6/DhwxlWqLBYLDl27LeHkQdjyJMx5Mk4cmUMeTLGkfJEG/sP8mAMeTKGPBlHrowhT8Y4Up5oY/9BHowhT8aRK2PIkzHkyThylfk6dOhgdgiS7Bz6acGCBbp586bq1q2rGTNmpFikeFDp0qU1e/ZsVapUSdevX9fixYvtCjA6OlojR47Uhx9+qKioqGS38fDwkCTFxjL5CQAAAAAAAAAAzsSuQsWWLVtksVj06aef2lXN8vT01JAhQ2S1WrVx40a7AvTw8NCaNWu0du1abd68Ocn66Oho7dy5U5JUpUoVu44NAAAAAAAAAADMZVeh4tSpUypYsKCefvppu09UvXp1FSpUSCdPnrR7306dOkmSRo4cqXPnztleDw8P15AhQxQcHCw/P78MG/YJAAAAAAAAAABkDbvmqLh37166ihQJihUrpqNHj9q9X48ePXTgwAFt3rxZrVu3Vo0aNeTp6am//vpLoaGhKlmypCZMmMCYZQAAAAAAAAAAOBm7ChVeXl4KCQlJ98lCQ0Nt80nYw93dXRMmTNDChQu1ZMkSHTx4UPHx8XriiSf0xhtvqFu3bsqXL1+64wIAAAAAAAAAAOawq1BRunRp/fXXX7p586YKFChg14lCQ0N15coVlS5d2q79Eri4uOj111/X66+/nq79AQAAAAAAAACA47Frjoo6derIarVq9uzZdp9o7ty5iouLU7Vq1ezeFwAAAAAAAAAAZE929ajo2LGjpk2bppkzZ+rZZ59V/fr1De23e/duTZ48WRaLRS+//HK6AgUAAAAAAAAAICN4uNp1a9xUzhRretn1DosVK6Y+ffroxx9/1AcffKCuXbuqW7duyp8/f7Lbh4WFafr06Zo9e7bi4uLUqlUrPffccxkRNwAAAAAAAAAA6fJlk45mh4AH2F2Keffdd3Xw4EFt3rxZU6ZM0fTp01WhQgU9/fTT8vHxUUxMjG7evKmTJ08qKChI8fHxslqtqlmzpkaNGpUZ7wEAAAAAAAAAADyivn37qm/fvll+XrsLFRaLRRMnTtSUKVM0ZswYxcbG6q+//tLhw4cTbWe1WiVJuXPnVu/evdWtWze5uWX/LioAAAAAAAAAAMC4dFcOevXqpZdffllLlizRrl27dObMGYWFhSl37twqXLiwSpcurSZNmqhx48YpDg0FAAAAAAAAAABytkfq4vD444+rd+/e6t27d0bFAwAAAAAAAAAAchAXswMAAAAAAAAAAAA5l109Kho2bPjIJ7RYLNq8efMjHwcAAAAAAAAAADg/uwoVf//9tywWi22i7PSwWCzp3hcAAAAAAAAAAGQv6ZqjwmKxqEKFCmrZsqUKFSqU0TEBAAAAAAAAAIAcwq5CxYABA7R69WodPnxYR48e1fHjx1WzZk21atVKzZs3l7e3d2bFCQAAAAAAAAAAsiG7ChU9evRQjx49dOHCBf32229avXq1du3apd27d+urr75SvXr11Lp1azVp0kReXl6ZFTMAAAAAAAAAAMgm0jX0U8mSJfXuu+/q3Xff1dmzZ7Vq1SqtXr1aW7Zs0datW+Xp6amGDRuqdevWatCggTw8PDI6bgAAAAAAAAAAkA2kq1DxoNKlS6tPnz7q06ePTpw4YStarFmzRmvXrlWePHnUpEkTtWrVSvXr15erq2tGxA0AAAAAAAAAALKBRy5UPMjPz09+fn76+OOPdfToUVvR4pdfftGKFSvk7e2t5s2b66uvvsrI0wIAAAAAAAAAACflklkHrlixogYMGKBNmzZp6NCh8vLyUlhYmBYtWpRZpwQAAAAAAAAAAE4mQ3tUPOjgwYO24Z+uXLkiq9UqSSpevHhmnRIAAAAAAAAAADiZDC1UHDhwwFac+Pvvv23FiWLFiql58+Zq2bKlqlatmpGnBAAAAAAAAAAA6fTLL79o8eLFOnbsmCIiIlSwYEHVqVNHvXr1UpkyZbIkhkcuVOzfv19r1qzRunXrEhUnihYtaitO+Pv7P3KgAAAAAAAAAABkhJBZX8oaE212GIZY3D1UuOvwDD+u1WrVJ598opUrV8rd3V2VK1eWj4+Pjh07pmXLlmnNmjWaOHGi6tSpk+Hnfli6ChWBgYG24sTVq1dtxYkiRYqoRYsWatmypapXr56hgQIAAAAAAAAAkBGsMdFSbIzZYRhizaTjrlixQitXrlSRIkU0ffp0+fn5SZLi4uI0ZswYTZo0SZ988onWr18vLy+vTIriPrsKFd98843WrVuna9eu2YoThQsXVvPmzdWiRQs9++yzmRIkAAAAAAAAAADIOIsXL5Yk9e/f31akkCRXV1f169dPGzdu1MmTJ7Vz5041bdo0U2Oxq1AxZ84cWSwWubq6qnbt2mrZsqWeffZZubi4SJIuXLhg6DglS5a0P1IAAAAAAAAAAJAhvL29VbZsWdWoUSPJOovFotKlS+vkyZO6du1apseSrqGf4uLitGPHDu3YscPufS0Wi44ePZqe0wIAAAAAAAAAgAwwfvz4FNfFxcXpyJEjku7PR53Z7C5UJAz5lF6Puj8AAAAAAAAAAMg88+bN06VLl1SgQAHVrl07089nV6Fi48aNmRUHAAAAAAAAAAAw2a5du/Tdd99Juj9/Re7cuTP9nHYVKooXL55ZcQAAAAAAAAAAABNt3rxZ/fr1U3R0tDp16qQOHTpkyXldsuQsAAAAAAAAAADAYc2ZM0cffPCBIiMj1blzZw0bNizLzp2uybQBAAAAAAAAAIDzi42N1VdffaUFCxbIYrGof//+6tWrV5bGQKECAAAAAAAAAIAcKDIyUh988IG2b9+uXLly6dtvv1WLFi2yPA4KFQAAAAAAAAAA5DBxcXG2IoWPj48mT56sqlWrmhILhQoAAAAAAAAAAHKYiRMnavv27fLy8lJAQIDKlStnWiwUKgAAAAAAAAAAyEHCwsI0ffp0SVKRIkU0efLkFLd9+eWX9fzzz2dqPBQqAAAAAAAAAAA5isXdQ1azgzDI4u6R4cfcu3evwsPDJUnBwcEKDg5OcdvKlStTqAAAAAAAAAAAICMV7jrc7BBM1axZMx0/ftzsMGxczA4AAAAAAAAAAADkXBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBo3swMw6pdfftHixYt17NgxRUREqGDBgqpTp4569eqlMmXKmB0eAAAAAAAAAABIB4fvUWG1WtW/f399+umn2r9/v8qWLasXXnhBrq6uWrZsmdq1a6ddu3aZHSYAAAAAAAAAAEgHh+9RsWLFCq1cuVJFihTR9OnT5efnJ0mKi4vTmDFjNGnSJH3yySdav369vLy8TI4WAAAAAAAAAADYw+F7VCxevFiS1L9/f1uRQpJcXV3Vr18/lStXTtevX9fOnTvNChEAAAAAAAAAAKSTwxcqvL29VbZsWdWoUSPJOovFotKlS0uSrl27ltWhAQAAAAAAAACAR+TwQz+NHz8+xXVxcXE6cuSIJKlo0aJZFRIAAAAAAAAAAMggDl+oSM28efN06dIlFShQQLVr187QY1utVsXFxSV6zdXVNUPP4SwezkNayJNxOTFX5Mk4fveM4ZoyJrU8ZXU+aGP/wfVrDHkyhjwZR66MIU/G0MY6Jq5fY8iTcfx/ZgzXlDHkybiUcpVT85GdOW2hYteuXfruu+8k3Z+/Infu3Bl6/IiICB04cMC27OLiourVq2foOZzFoUOHFB8fb2hb8mQsT1LOzRV5Mo7fPWO4poxJLU/JDa+YmWhj/8H1awx5MoY8GUeujCFPxtDGOiauX2PIk3H8f2YM15Qx5Mm4lHKV1W0sMp/Dz1GRnM2bN+u9995TdHS0OnXqpA4dOpgdEgAAAAAAAAAASAen61ExZ84c/ec//1FcXJw6d+6szz//PFPOkzt3bpUvXz5Tju1sqlatanYIToE8GUOejCNXxpAnYxwpT7Sx/3Ckn4sjI0/GkCfjyJUx5MkYR8oTbew/HOnn4sjIk3HkyhjyZAx5Mo5c5RxOU6iIjY3VV199pQULFshisah///7q1atXpp3PYrEw1tn/Rx6MIU/GkCfjyJUx5MkYR8oTbew/yIMx5MkY8mQcuTKGPBnjSHmijf0HeTCGPBlHrowhT8aQJ+PIVc7hFIWKyMhIffDBB9q+fbty5cqlb7/9Vi1atDA7LAAAAAAAAAAA8IgcvlARFxdnK1L4+Pho8uTJdPkBAAAAAAAAACCbcPhCxcSJE7V9+3Z5eXkpICBA5cqVMzskAAAAAAAAAACQQRy6UBEWFqbp06dLkooUKaLJkyenuO3LL7+s559/PqtCAwAAAAAAAAAAGcChCxV79+5VeHi4JCk4OFjBwcEpblu5cmUKFQAAAAAAAAAAOBmHLlQ0a9ZMx48fNzsMAAAAAAAAAACQSVzMDgAAAAAAAAAAAORcFCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANM4ZaEiODhY1apV0zfffGN2KAAAAAAAAAAA4BE4XaHi+vXr6t27tyIiIswOBQAAAAAAAAAAPCKnKlQEBQWpU6dOOn36tNmhAAAAAAAAAACADOBmdgBGhIWFacqUKQoICFB0dLRKlCihixcvmh0WAAAAAAAAAAB4RE7RoyIgIEDTpk2Tj4+PJk6cqLZt25odEgAAAAAAAAAAyABOUajw9fXVwIEDtXbtWjVu3NjscAAAAAAAAAAAQAZxiqGfOnTokOXntFqtiouLS/Saq6trlsfhCB7OQ1rIk3E5MVfkyTh+94zhmjImtTxldT5oY//B9WsMeTKGPBlHrowhT8bQxjomrl9jyJNx/H9mDNeUMeTJuJRylVPzkZ05RaHCDBERETpw4IBt2cXFRdWrVzcvIBMdOnRI8fHxhrYlT8byJOXcXJEn4/jdM4ZrypjU8lSjRo0sjYU29h9cv8aQJ2PIk3HkyhjyZAxtrGPi+jWGPBnH/2fGcE0ZQ56MSylXWd3GIvM5xdBPAAAAAAAAAAAge6JHRQpy586t8uXLmx2GQ6hatarZITgF8mQMeTKOXBlDnoxxpDzRxv7DkX4ujow8GUOejCNXxpAnYxwpT7Sx/3Ckn4sjI0/GkStjyJMx5Mk4cpVzUKhIgcViYayz/488GEOejCFPxpErY8iTMY6UJ9rYf5AHY8iTMeTJOHJlDHkyxpHyRBv7D/JgDHkyjlwZQ56MIU/Gkaucg6GfAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmMbN7ADSo2/fvurbt6/ZYQAAAAAAAAAAgEdEjwoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGnczA7AqLNnz2r8+PHat2+fbty4IV9fX7Vs2VK9evVSnjx5zA4PAAAAAAAAAACkg1P0qDh06JDatWunX3/9VYULF1bDhg0VHh6uSZMm6fXXX9edO3fMDhEAAAAAAAAAAKSDwxcqYmJi1K9fP4WHh2vUqFFauHChxowZow0bNqhx48Y6ceKEfvjhB7PDBAAAAAAAAAAA6eDwhYpVq1bp0qVLqlevnl555RXb67ly5dLIkSPl5eWlxYsX6/bt2yZGCQAAAAAAAAAA0sPhCxWbN2+WJL344otJ1hUoUEC1atVSTEyMtm/fntWhAQAAAAAAAACAR+TwhYoTJ05IksqXL5/s+nLlykmSjh8/nmUxAQAAAAAAAACAjOFmdgBpuXr1qiTp8ccfT3Z94cKFJUnXrl3L0PNarVbFxcUles3V1VWS5OGadWnzcPnnXBZ3D1mz6LwWdw/b9w/nIS3kybickivyZBy/e8ZwTRljNE8J+cgqtLHOdf2SJ+Mc+fc8JTklTwnnSuAMuSJPxjny7x5tLNdvWhz5+k1JTslTwrkS8P9ZyrimjCFPxhnJVVa3sch8FqvVmlXXWLpUqFBB8fHx2rVrl3x8fJKsX7hwoYYOHaoWLVro//7v/x75fAcOHEjxF8DLy+uRj++MwsPD7dqePBmXE3NFnozjd88YriljUsuTl5eXcuXKpdKlS2dqDLSxSXH9GkOejCFPxpErY8iTMbSxjonr1xjyZBz/nxnDNWUMeTIupVxlVRuLrOPwPSpcXV0VHx+f5nYZVW9J7Vzp+RDJiciTceTKGPJkDHkyjlwlllX5oI3NGOTKGPJkDHkyjlwZQ54So411LuTKGPJkDHkyjlwZQ54SIx/Zj8MXKvLkyaNbt24pKioq2fWRkZGSMq6q6O7urpiYGLm4uMjT0zNDjgkAgKPLlStXpp+DNhYAkBPRxgIAkDmyoo1F1nH4QkWRIkV069YthYSEqGjRoknWJ8xNUaRIkQw5X5UqVTLkOAAAIDHaWAAAMgdtLAAAcHYuZgeQlvLly0uSTp48mez6U6dOJdoOAAAAAAAAAAA4D4cvVDRs2FCStG7duiTrbt68qT179sjT01N16tTJ4sgAAAAAAAAAAMCjcvhCRdOmTVW8eHFt2bJFP//8s+31yMhIff755woPD1fHjh3l4+NjYpQAAAAAAAAAACA9LFar1Wp2EGn5448/9M477ygyMlKVKlVSiRIltH//fl27dk2VK1dWQECA8uTJY3aYAAAAAAAAAADATk5RqJCkEydOaNy4cdq7d6/Cw8NVokQJtWzZUt26dVPevHnNDg8AAAAAAAAAAKSD0xQqAAAAAAAAAABA9uPwc1QAAAAAAAAAAIDsi0IFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATONmdgBI3tmzZzV+/Hjt27dPN27ckK+vr1q2bKlevXopT548ZofncEJDQzVlyhRt3rxZly9fVq5cuVS1alX16tVLtWrVMjs8UzVu3FiXLl1Kc7uaNWtqzpw5WRCR41u/fr0CAgJ09OhRRUVFydfXVw0aNND777+vQoUKmR2ew1i9erXmzZuno0ePymq16sknn9Srr76qDh06yMPDw+zwTBUcHKy2bduqQ4cO+vzzz5PdZufOnZo6daqOHTumyMhIlSlTRq+//rrat28vi8WSxRHnPLSzxtHGpow2Nn1oZ9NGG5sy2ljHRxtrHG1s6mhn7Ucbmzba2NTRzsJMFqvVajU7CCR26NAhvf322woPD5e/v798fX0VGBiokJAQ+fn5ad68ecqXL5/ZYTqM06dP6+2331ZISIiKFy+uihUr6uLFiwoKCpLFYtG4cePUtGlTs8M0zciRIxUaGprsuvj4eK1Zs0ZxcXHq3r27Bg4cmMXROZ4xY8Zo/PjxslgseuaZZ5Q/f34dOnRIISEhKlSokObNm6dSpUqZHabphg8frp9//lmSVL58eRUvXlzHjh3T5cuX9eyzz2rChAl67LHHTI7SHNevX1eXLl10+vRpdenSJdk/7ubOnauvvvpK7u7uqlWrltzd3bV7925FRESobdu2+vbbb02IPOegnTWONjZ1tLH2o51NG21symhjHR9trHG0sWmjnbUPbWzaaGNTRzsL01nhUKKjo62NGjWy+vn5WZcuXWp7PSIiwvree+9Z/fz8rMOHDzcvQAcTExNj/de//mX18/Ozjhw50hobG2tbt2jRIqufn5+1Ro0a1qioKBOjdFz/+9//rH5+fta33347Ue5yqhMnTljLly9vrVatmnXfvn221yMjI619+/a1+vn5WXv27GlihI5h+fLlVj8/P2vlypWt69ats70eHR1tHTFihNXPz8/6ySefmBiheY4ePWpt1qyZ1c/Pz+rn52f9+uuvk2xz+vRp69NPP2199tlnrUFBQbbXL126ZG3atKnVz8/PumrVqqwMO0ehnTWONvbR0MYmRTubNtrYlNHGOj7aWONoYx8d7WxitLFpo41NHe0sHAFzVDiYVatW6dKlS6pXr55eeeUV2+u5cuXSyJEj5eXlpcWLF+v27dsmRuk41q9fr+PHj+u5557T4MGD5erqalvXvn17Pf/88/L29tbRo0dNjNIx7dixQ5MnT5aPj49++OGHRLnLqbZv3y6r1aqmTZvqmWeesb3u6empjz/+WJK0d+9es8JzGPPnz5ckvffee2rWrJntdXd3dw0aNEhly5bVihUrdPz4cbNCzHJhYWH673//q44dO+rcuXMqUaJEittOnTpV8fHx6tGjh55++mnb68WKFdOwYcMkSTNmzMj0mHMq2lnjaGPTjzY2ebSzaaONTYo21nnQxhpHG/toaGeToo1NG21s8mhn4UgoVDiYzZs3S5JefPHFJOsKFCigWrVqKSYmRtu3b8/q0BzS6tWrJUnvvPNOsuunTZumTZs2qVq1alkYleOLjo7Wl19+KavVqqFDh6pgwYJmh+QQXFzufyT+/fffSdYldDnOnz9/VobkkBL+cGvSpEmSdW5ubnruueckSVu3bs3SuMwUEBCgadOmycfHRxMnTlTbtm1T3HbLli2Skv+cr1u3rry9vfXXX3/p+vXrmRRtzkY7axxtbPrQxqaMdjZttLFJ0cY6D9pY42hj0492Nnm0sWmjjU0e7SwcCYUKB3PixAlJ98fKS065cuUkKcdVeFNy+PBhSVK1atV069YtzZs3T8OGDdNXX32l3377TXFxcSZH6JimT5+uc+fOqW7dumrVqpXZ4TiM+vXry8XFRXv37tXIkSN1+fJlRUREaNeuXfrss88kST179jQ5SvMl/F6lNL6wm5ubJOnMmTNZFpPZfH19NXDgQK1du1aNGzdOcbvr168rNDRUnp6eKl26dJL1rq6uKlOmjCQ+5zML7axxtLHpQxubMtrZtNHGJkUb6zxoY42jjU0/2tnk0camjTY2ebSzcCRuZgeAxK5evSpJevzxx5NdX7hwYUnStWvXsiwmRxUdHa1Lly7J09NTR44cUf/+/XXz5k3b+rlz56pSpUqaNGmSihQpYmKkjuXOnTuaNm2aJOnf//63ydE4lrJly+o///mPvvrqK82ePVuzZ8+2rStQoIDGjh2b7JMDOU3ZsmV19OhR7d27N1G3fkmyWq0KDAyU9P/au/O4KOv9//+PYREFUdxzwwUDNzLU7LjnyTI9uZ1OJvnNhbTMNLU8lkt2bi6tLsctTdRc6qOJYpKdytSjuRzRAncRFxRwQUVwYxPh9we/mUBmYAaQAX3ebzdvt7qua655XcM11/M9t+v9fl8QHx9vj/Ls4uWXX7ZqO+M1vlq1ahgMBrPbGK/zV69eLZriJAflrHWUsQWjjM2bcjZ/ytjclLGlhzLWOsrYglPOWqaMzZ8y1jzlrJQkGlFRwiQnJwNZ83iaY1yelJRUbDWVVLdv3wYgIyODkSNH0rhxYzZs2EBYWBhr167F19eXY8eOMWLECDIyMuxcbcmxZs0abt++zTPPPIOvr6+9yylxWrVqRZcuXXBycsLPz48uXbpQvXp1EhISCAwMJCYmxt4l2t1LL70EwOeff87hw4dNyzMyMpg3b55pLt20tDS71FeSGa/x5cqVs7iNi4sLAHfu3CmWmh41ylnrKGMLRhmbP+Vs3pSxBaeMtT9lrHWUsQWnnM2bMjZvytjCUc5KcdCIihLG0dHRqsZIZmZmMVRTshnD4+7du3h5ebF06VLTUD0/Pz++/vprXnjhBY4cOcK2bdtyPCzpUXXv3j1Wr14NwIgRI+xcTclz9OhRAgICKFeuHEFBQTRt2hTIOsdmz57N8uXLGTRoED/++GOe4fywe/XVVwkNDWXLli288sor+Pr6UrVqVU6ePElcXBz9+/dn7dq1pu+j/Mk4d6w1dJ1/MJSz1lHG2k4Zmz/lbP6UsQWnjLU/Zax1lLEFo5zNmzI2f8rYwlHOSnHQiIoSxs3NDYDU1FSz61NSUgBwdXUttppKquzhOmDAgFxh4u7uTq9evQD43//+V6y1lVT79+/nypUrNGrUiBYtWti7nBJn+vTp3LhxgylTppgadgDOzs6MHz+eVq1aceHCBYKDg+1Ypf05ODgwd+5cpkyZgre3NydOnOCPP/6gWbNmBAUF8fTTTwNQoUIFO1da8hiv8cZruTnG67+u8w+GctY6yljbKWPzp5zNnzK24JSx9qeMtY4ytmCUs3lTxuZPGVs4ylkpDrpNWMJUr16dxMRErl69Ss2aNXOtN87nqbkqoXz58pQpU4a0tDTq1Kljdhvj8uvXrxdnaSXWzz//DGBq+MqfUlJSOHjwII6OjnTo0CHXeoPBQOfOnfnjjz9MD797lDk4ODBgwAAGDBiQa92vv/4KYPF7+Sgzztl87do1i9voOv9gKWeto4y1nTI2b8pZ6yljC0YZa3/KWOsoYwtGOWuZMtZ6ytiCU85KcdCIihLGx8cHgFOnTpldf/r06RzbPcocHR15/PHHgT8f6nM/4wW0SpUqxVZXSbZz504AevToYedKSp5bt26RmZmJwWDA0dHR7DbG5Xfv3i3O0kqc6Ohodu/ebfEBWcaeX0888URxllUqeHh4UKNGDZKTk83OEXvv3j3Onj0LgLe3d3GX90hQzlpHGWs7ZWzelLPWUcYWnDLW/pSx1lHGFoxy1jJlrHWUsYWjnJXioBsVJcwzzzwDwJYtW3KtS0hIIDQ0FBcXF9q2bVvMlZVMxs8rJCQk17rMzEx+++03ANq0aVOcZZVIV65c4dKlS1SrVo26devau5wSp0qVKnh4eJCenm5qBN9vz549ADmG0j6KNmzYwOuvv8769etzrTtx4gTh4eF4eHjQvn17O1RX8uV1nd+zZw+3bt2iWbNm6oXygChnraeMtZ4yNn/KWesoYwtHGWtfyljrKWNto5zNmzLWOsrYwlPOyoOmGxUlTNeuXalduzY7duxg7dq1puUpKSlMmjSJpKQk+vXrR+XKle1YZcnRv39/KlSowN69e1m8eLHpgT2ZmZnMmzePo0ePUq9ePbp06WLnSu3v8OHDAPj6+tq5kpLJwcEBf39/AKZOnUpkZKRp3b1791iwYAF79+6lYsWK9O3b115llghdu3bFYDCwYsWKHD0pLl26xHvvvUdmZiZvvvmm5qW04NVXX8XJyYlFixaZvpcAFy9eZNq0aQAMHz7cXuU99JSz1lPGWk8Zmz/lrHWUsYWjjLUvZaz1lLG2Uc7mTRlrHWVs4Sln5UHTMypKmLJly/LZZ58xdOhQPvroI9atW0edOnUIDw/nypUrNG/enLFjx9q7zBKjevXqzJo1i1GjRjFnzhyCg4Px9vYmMjKS8+fP4+HhwcyZMylTpoy9S7W72NhYAKpVq2bnSkqut99+m4iICP773//Su3dvWrZsScWKFYmIiODChQu4uroyd+5cKlWqZO9S7crX15ehQ4cSGBhIz549eeqppwAIDQ0lNTWVvn37MnjwYPsWWYI1btyYsWPH8sUXX+Dv70+bNm1wcXEhNDSUpKQk+vfvz/PPP2/vMh9aylnrKWOtp4y1jnI2f8rYwlHG2pcy1nrKWNsoZ/OnjM2fMrbwlLPyoOlGRQn01FNPERQUxIIFC9i/fz+nT5+mTp069OvXjyFDhuDm5mbvEkuUTp06ERISwuLFi9m7dy87duygatWq9OvXjzfffFMPQvr/JSQkAFChQgU7V1JyOTs7s2jRIoKDgwkODiYiIoLU1FSqV69Ov379GDZsGJ6envYus0R47733qFu3LmvWrGHfvn24ubnRokUL/P396d69OwaDwd4llmhDhw6lQYMGrFixgkOHDmEwGPDy8mLAgAH07t3b3uU99JSz1lPGWkcZax3lrHWUsYWjjLUvZaz1lLHWU87mTxlrHWVs4Sln5UEyZBrHGIqIiIiIiIiIiIiIiBQzPaNCRERERERERERERETsRjcqRERERERERERERETEbnSjQkRERERERERERERE7EY3KkRERERERERERERExG50o0JEREREREREREREROxGNypERERERERERERERMRudKNCRERERERERERERETsRjcqRERERERERERERETEbnSjQkRERERERERERERE7EY3Kh4hERERTJ8+nb/97W+0bt0aX19fOnfuzNChQ/nmm29ISUmxd4kA/PWvf8XHx4egoCCrtg8ODsbHx4dOnTo94Mps98EHH+Dj42Pzv/nz5xMaGmr6//T0dHsfSqHExcXx9NNPM3HiRNOy+fPn4+Pjg7+/vx0rs49BgwbRrVs3kpKSbH6t8XPL/i84ODjHNhcvXmTSpEl06tSJ5s2b07FjR8aPH8+ZM2eK6hBMjN8/Hx+fItlffuf95cuXuX37do5lxu/ZuHHjCv3+sbGxpvc/f/58jv1n/7d3795Cv5c8XJSxxU8Zm0UZm5My1jJlrJRWytjip4zNoozNSRlrmTJWpGg42bsAKR7z5s1j0aJFZGRkUL58eTw9PXF2dubq1avs2rWLXbt2sXTpUhYuXEizZs3sXe5Do379+rRs2TLX8sjISG7fvk2VKlWoV69ervU1a9YsjvKKzcSJE0lLS+Pdd9+1dyklwqRJk+jTpw+ffvopU6dOLdA+ypcvj7e3NwBVqlQxLT979iz+/v4kJibi7u6Oj48PsbGxbNq0iZ9//pmFCxfSsWPHIjmO4pSWlsaiRYtYvnw5ISEhlC9fvtjeO/v3OCwsrNjeV0oPZax9KGOzKGNzUsbaThkrJZky1j6UsVmUsTkpY22njBWxjW5UPAI2bNjAwoULcXV15ZNPPuG5557D0dHRtP7MmTNMnDiRgwcP8vrrr/Of//yHypUr27Fi2zz33HO0aNECZ2dne5eSy/Dhwxk+fHiu5a+99hr79++nU6dOfPrpp2Zfm5yczH/+8x8AnJxK71d18+bN7N69m3feeYeqVavau5wSwdvbm7///e+sW7eOPn36mP0RYM0+1qxZk2NZeno6w4cPJzExkd69ezN16lTKli1LWloan332Gd988w3vvvsuW7ZsoVKlSkV1OEXqiSeeMHveX7lyhS+//NLsa959912GDRuGu7v7A6kp+/e4qHrcyMNDGWs/ylhlrDnKWMuUsVLaKGPtRxmrjDVHGWuZMlakaGjqp0fA4sWLARg/fjwvvPBCjsYdgJeXF4sWLaJKlSokJCSwatUqe5RZYO7u7nh5eeHp6WnvUopUuXLl8PLywsvLy96lFFhaWhqzZs3C3d2dQYMG2bucEmX48OEYDAY++eSTIttnSEgI58+fp1atWkyfPp2yZcsCUKZMGSZPnkzr1q25efMmK1asKLL3LGoFOe+rV6+Ol5cX1atXf4CViZinjC2dlLEPN2WsecpYKW2UsaWTMvbhpow1TxkrUjR0o+Ihd+PGDaKjowFo0aKFxe0qV65M165dATh8+HCx1CYPv6CgIC5evMiLL75YrEMcS4M6derQsWNHDh8+zM6dO4tknxs3bgSgV69elClTJsc6g8HAK6+8AsCPP/5YJO8n8qhTxoo9KWMtU8aKlH7KWLEnZaxlylgReZBK7zg8sUr2IWf//e9/adq0qcVtR40axcCBA3PME5jdkSNHWLVqFQcOHODatWu4urri4+ND79696du3b64eLgApKSls2LCBrVu3cvLkSW7evEmZMmWoVasWHTp0YMiQIdSoUcOqY7l+/ToDBw7k1KlTeHt7s2LFCqpUqUJwcDATJkygRo0a/Pbbb6btjcNSAwMDqV69OosWLeLAgQPcvHmTGjVq8OyzzzJ8+HCzw4OTk5NZu3YtmzZt4vz58zg7O9OyZUtGjBjB6dOnmTBhAn379rU43LUohIaGMnDgQACOHTtm+lt+8MEHbNy4kenTp9O6dWsWLFjAvn37uHXrFnXq1OHll19m8ODBGAwGtmzZwsqVKzlx4gQZGRk0btyYt956i86dO5t9zwMHDrB69WrCwsJITEykQoUKPPnkk7z22mu0bdvW5mP45ptvAOjdu3ee212/fp0lS5awbds2Ll26RMWKFWnVqhXDhg3D19fX7GuioqJYsWIFe/fu5dKlS7i4uODl5UWPHj3o37+/qReGkfFz69mzJzNnzsy1P+N5VLt2bbZv325abjyPlixZwtGjR/n222+5c+cOdevWZe7cuXh5eREXF0dgYCC7du3iwoULODs7U7NmTdq1a8fgwYOpU6eO2WPo06cPO3fuZPXq1Rb/JtbKyMgw/Thr1aqV2W2MQ3NjYmK4dOmSaQ5ZW4aB3v/5WBIbG8uzzz5L1apV2b17N+vXr2fdunWcPn0ayBry269fP/7+979jMBhMrzN33hv/BkbPP/88AKtWreLpp5/O82975coVvv32W/bs2UN0dDR37tzBzc2Nhg0b8vzzz/Pqq6/mOldErKWMVcYqY8nxuSljlbHKWCkqylhlrDKWHJ+bMlYZq4yVR4FuVDzk3NzcaNmyJWFhYcyfP5+YmBheeuklWrZsmatBVq1aNapVq2Z2P4GBgcyePdv0EDMfHx8SEhLYv38/+/fvZ9OmTXz55Zc55ta7fv06gwYNIjIyEoPBgKenJzVr1iQuLo5Tp05x6tQpQkJCCA4O5rHHHsvzOBISEhg8eDCnTp2iadOmLF++3Oq5CX/77TfWrl1LZmYm9evXx83NjejoaFauXMmOHTsIDg7O0UsiISGBN954g8OHD2MwGPDy8sLBwYEdO3awa9cuOnXqZNX7PmhhYWHMmDGD9PR0vLy8MBgMnDlzhk8//ZTr169jMBj46quvqFChAvXr1ycqKorw8HDefPNNlixZkus4Zs6cSWBgIAAVK1bE29ubK1eusG3bNrZt28awYcMYN26c1fVFRERw9uxZKlWqlGcvqCtXrtC3b18uX76Mp6cnDRo0ICoqil9++YXt27cTGBiYq3EZEhLCpEmTSEtLo2zZsnh7e3Pnzh0OHTrEoUOH2LBhA4GBgfmeV7ZYvHgxYWFheHp64u7uzu3bt6lfvz7R0dH079+f+Ph4XF1dadCgAQDnzp1j9erVbNy4kdWrV5v9cdWuXTscHBzYs2cPiYmJeHh4FLi+uLg4UlJSACwOH69ZsyaOjo7cu3ePc+fOmRp4tswtaukaYUlmZibvv/8+mzZtokKFCjRo0ICYmBgOHjzIwYMHiYqKyve88vb2JikpiaNHjwLQrFkzXFxc8p3L8+DBgwwbNoybN2/i4uKCp6cnTk5OxMbGEh4eTnh4ONu2bWPVqlVmf6CK5EcZq4xVxhYNZWwWZazIn5SxylhlbNFQxmZRxoqUDrpR8Qj48MMPGTBgAElJSWzcuJGNGzdSvnx5WrVqRevWrXn66afx9fXFwcH8TGC//PKL6e7uiBEjeOutt0zD8fbt28d7773H/v37GT9+PIsWLTK97vPPPycyMpJ69eqxZMkS6tevb1q3a9cuRo0aRXx8PCtXruT999+3WP+NGzcICAjg5MmT+Pr6snz5cipUqGD18a9evZpnnnmGadOmmeb+27ZtG6NGjeL8+fOsX7+ewYMHm7afPn06hw8fpm7duixYsIDGjRsDWQ9rGz16tFV34YtDcHAwrVq1Yu7cuVSrVo2MjAwmTZpEcHAwS5cuNQXr4MGDcXBwICEhgYCAAI4fP05gYGCOBt7atWsJDAykQoUKfPjhh/Tq1QvICueffvqJSZMmERgYSL169Xj55Zetqm/v3r0APPnkkxbPLcjqsVC7dm2CgoJ44okngKyeEkOHDuXcuXPMnj2boKAg0/aHDh1iwoQJpKen069fP95//31TA/3EiROMGTOGyMhIRowYwbp164rsAW5hYWGMGzeOYcOGAVk/YBwdHZkzZw7x8fF069aNTz75BDc3NwCuXbvGyJEjCQ8PZ9asWSxbtizXPj08PGjUqBGRkZHs27ePF154ocD1xcfHm/7b0kMEHR0dcXd3JzExkYSEBNPy+x9mVpTi4+PZvHkzkyZNYsCAATg6OpKamsrkyZMJCQnh66+/JiAgIM8HH3744Yemni0Ac+bMoV69enm+77179/jnP//JzZs36dq1Kx9//DEVK1YE4O7du3z99dfMmjWL33//nV27dvHMM88U2THLo0UZq4xVxhaeMrbgdSlj5WGmjFXGKmMLTxlb8LqUsSLFT8+oeAQ0bdqUoKCgHMPobt++zc6dO5k1axb9+vWjQ4cOzJkzh+Tk5FyvnzNnDgCvvPIKo0ePzjFn4F/+8hcWLFgAwPbt2/n999+BrAvogQMHMBgMTJgwIUfjDqBjx4706NEDgMjISIu137p1iyFDhnD8+HH8/PxYsWKFTY07gCpVqjBv3rwcDyh69tlnTQ2csLAw0/IzZ86wefNmDAYDCxcuNDXuIOthbV999VWJGV7n5OTE7NmzTT0DHBwceOONN4Cs4ZO9e/cmICDA1LiqVKmSaSji8ePHTftJS0tj/vz5AHz88cemxh1kzQfZo0cP/vnPfwIwf/580tPTraovNDQUyOpFkJ+ZM2eaGncAdevWZeTIkUDWUO3U1FTTunnz5pGenk6HDh2YNm1ajl5ETZo0YenSpZQtW5Zjx44V6RyWtWvXZujQoab/NzZIIiIigKz5NI2NO4CqVasyadIkOnbsSKNGjSzu1/j57Nu3r1D1GXuhALi4uFjczrjO3Hf9QXn11VcZOHCgqbeHi4sLEydOxGAwkJ6e/kDmE46IiCAxMZEyZcowffp0U+MOwNnZmTfeeIO6desCeV+DRPKjjFXGgjK2sJSxBaeMlYeZMlYZC8rYwlLGFpwyVqT46UbFI6JRo0b83//9H99//z0jR47Ez88PZ2dn0/r4+HgWL15Mr169uHz5smn5uXPniIqKAmDQoEFm9+3n54efnx+Q1cMDsi6g27Zt49ChQ2bv8GZmZuLq6grkDKbsbt++TUBAAMeOHaNFixYsW7asQA+yatu2rdnA8/LyArIakUa//vorkDU3orn5DmvXrm16WJu9+fj45BoSWrt2bdN/m5sr0tjIvX37tmlZeHg4165dw83NzXSn/369evXCwcGBuLi4HI3DvMTGxgKWh28aVatWzeyQTePnn5mZSWJiIgBJSUmmhqOxsXq/unXrmv5GxvOxKPj5+eWYg9LI2CNi5syZbN26Ncf57Ovry9KlS5kwYYLF/RqH2MbExBSqvrx6+5hj7lgelC5duuRaVqlSJVMj+ebNm0X+ns2aNePAgQMcOHDA7PD6tLQ0U6OvOBu78nBSxipjQRlbGMrYglPGysNOGauMBWVsYShjC04ZK1L8NPXTI6ZJkyY0adKEUaNGkZycTFhYGLt372bTpk3Ex8cTHR3N6NGj+e677wA4e/YsAOXKlTM1iMxp3rw54eHhpsagkYuLC9euXePQoUOcO3eO2NhYzp49y4kTJ7hx4waQ1WvCnH//+9+msIyPjy9wIFl6yJmxR0n2nhWnTp0CyNED5X7Nmzdn8+bNBaqlKBnnZcwuey8hc6Fmbvio8Zjv3r3LgAEDLL6fo6MjGRkZnD17NkevEUuMQzjz6zmUvYdQdsYfAPDnj4CYmBju3r0LZP0dLDH+je4/HwvD0pyWo0ePJjQ0lKioKN5++23KlCmDn58f7du3p3PnznmeS4Bpfsrr168Xqr7sn1dqaqrF3ijGXj3Ze1T5+/tb/T7VqlVj3rx5NtWW33fw3r17Nu3PFmXLluXs2bMcP36c6OhoYmJiOH36NCdPnjR9FpauQSK2Usb+SRmbRRlrHWVsFmWsiGXK2D8pY7MoY62jjM2ijBUpHXSj4hFWrlw52rdvT/v27Rk9ejQTJ07kxx9/5ODBgxw7doxmzZqZeizk1wPEOFTwzp07pmVXr17lX//6F9u3b89xAS1Xrhy+vr7cu3ePP/74w+I+U1JSaNOmDVFRUcTGxvLFF1/w0Ucf2Xyc2Xvc5Mc432H2sLxfQXrDPAjlypXLc721PROMPXHS0tJyDB+2xNpeA8bt8htinNfwzvtl70GT1wOojH+j7OdjYVmqs0mTJoSEhPDVV1/x66+/kpiYSGhoKKGhocyePRtvb28++ugjWrdubfb1xnPN+IOnoLI36BMTE802rNPT001/7ypVqpiWW/N3N8re28la+X0HMzMzbd6nNQ4dOsS//vWvXL2nKlWqROfOnTl+/Lipx5RIUVPG5qaMVcZaoozNoowVsY4yNjdlrDLWEmVsFmWsSOmgGxUPuSlTprBv3z769u3LW2+9ZXG7smXLMnXqVLZs2cLdu3eJioqiWbNmpoZb9mA1xxjmxu1TU1MZNGgQZ86cwcPDA39/f5o3b46Xlxeenp6mhzfl1cBr3749X375JTt27GD06NGsWbOGbt268Ze//MXWj8FqxkZTXsdblI2GksB4zM2aNSM4OLjI9uvi4kJSUlKOIcmFlX3uzFu3buVopGRnbCxl397IUmOiMMMm69aty/Tp05k6dSpHjx5l//79/O9//yM0NJTIyEiGDh3KTz/9ZLb3kLHWws4ZW6NGDdzd3bl16xYXLlwwO1T50qVLpl4f2efbPXnyZKHeuyQ6c+YMAwcOJCUlhUaNGvHSSy/RuHFjvLy8TD1j+vfvrwaeFIoy1jbKWGVsQShjSx5lrBQHZaxtlLHK2IJQxpY8ylh51OkZFQ+51NRUzp8/z9atW/Pdtnz58qZANM6517BhQyAr/M6cOWPxtUePHgX+nOdw69atnDlzBicnJ7777jvGjBlD165dadCggelBRNnnEDWne/fulC1blhdeeIGuXbuSmZnJpEmTSEpKyvdYCsr4QKi8As/40KmHhXFuyXPnzll8wFhmZib79u3j3LlzpKWlWbXfqlWrAn/27ikKnp6epmG/xnPOnPvPR8B03hmH3N7vypUrNteTmZlJbGwse/fuBbJ6/zzxxBMMHTqUZcuW8cMPP1C+fHmSk5PZsmWL2X0YPx9LjVVbGIcyh4eHm11vXF67dm2Lw1gfFitXriQlJYWGDRuyfv16AgICaNeuXY7jjouLs2OF8jBQxtpGGauMtYUytuRSxkpxUMbaRhmrjLWFMrbkUsbKo043Kh5yvXr1ArICL79eBrt37yYxMREPDw9atGgBZIW/sQGwcuVKs68LCwvj8OHDAHTq1An48wFUbm5uOe54G127do0dO3YA1s3rN2XKFNzd3U1DZx+U5557DsgKQnMN2vj4eNODyh4WTz31FO7u7ty5c8fiOfLDDz8waNAgunfvnm/D3Mh43li7vTVcXV1NPZFWrVpldpuYmBi2b98O/Hk+wp9DSo3z1WZ3794902tskZiYSLdu3RgyZAhHjhzJtb5BgwbUqlULsDx/pPHzMf6YKozu3bsDEBwcbLYhvnbtWgD69u1b6PcqbtmHgFszxPbChQtA1sMGzQ0v37NnDxcvXgQe7Nyi8nBTxtpGGauMtYUytvgoY6UkUsbaRhmrjLWFMrb4KGNFbKMbFQ+59u3b061bNwAmT57MjBkzcg0RS01NZcOGDYwZMwaAMWPG5BhqOHr0aAC+++475s2blyM4QkNDeeeddwDo2LEj7dq1A/4Mqxs3brBy5cocF+SDBw8yZMgQEhMTAeuGKtaoUYPx48cDsGbNGvbt22f1Z2CLpk2b0rVrVzIyMhg5ciSnT582rbt48SIjRozId/hwaePq6sobb7wBwIwZM9iwYUOOxsjWrVtNc6p2797d7FBMc1q2bAlY7hVRUCNHjsTJyYndu3fz4Ycf5vh7REREMGzYMFJTU2ncuDF9+vQxrWvVqhWQ9dC1VatWmc7JGzduMHHiRCIjI22upVKlSnTs2BGAiRMn5vhRkJGRwbfffktkZCQODg6m7e5n/HyM9RVGr1698PT0JCYmhnHjxpk+m7S0NKZPn84ff/yBu7s7/+///b9Cv1dxyz7frrFhlhfjD4w9e/bw+++/m5anp6ezefNmxo4da1pmfMidiK2UsbZRxipjbaGMLT7KWCmJlLG2UcYqY22hjC0+ylgR2+gZFY+AmTNn4urqyvfff8+qVatYtWoVtWrVokqVKqSmppqGQTo7O/Pee+/h7++f4/Xdu3cnOjqaOXPmsHDhQlauXEmDBg24fv266W5vmzZt+OKLLzAYDAD89a9/xc/Pj/DwcD7++GMCAwOpUaMGV69eJS4uDoPBQLt27di7dy9XrlwhMzPT9FpLXn75ZX744Qf279/PxIkT+eGHH8zO3VhY06ZN4/z585w6dYoXX3yRRo0a4ejoyKlTp3BycsLHx4eTJ0+ahmA+DIYNG0ZMTAzr1q1j4sSJfPHFF9SpU4e4uDjTUNJWrVoxY8YMq/fZqVMn5syZw5EjR0hLS6NMmTJFUqufnx8zZsxg8uTJrFu3jpCQELy8vEhKSiIqKgrIGvq8YMGCHO/ZuXNnWrduze+//86MGTNYvnw5lSpV4uzZs9y9e5dRo0Yxf/58m+uZOnUqr7zyCpGRkbz44ovUqVMHd3d3Ll68aBoOO3bsWBo1apTrtZcvX+bChQs4OTnRvn37An4if3JxcWHWrFkEBATwyy+/sGvXLho2bEhsbCyJiYk4OzuzYMGCHA8sKy08PDyoXbs2Fy5c4O2336Zhw4aMHj06R2+j7AICAti8eTMJCQkMGDCA+vXr4+bmRmxsLDdu3MDV1dV0jSrK3lLy6FHG2kYZq4y1hTK2eChjpaRSxtpGGauMtYUytngoY0VsoxEVj4AyZcrw6aefEhQUREBAAM2aNSMtLY2IiAguX75MgwYNeP311wkJCTH1SLjfm2++ybp163jxxRcpX748ERERpKSk0LZtWz777DNWrlyZIzQcHR1ZuXIl48aNo0mTJiQnJxMZGYmTkxM9evTg22+/5csvv8TFxYXExETCwsLyPQ6DwcD06dMpW7YsFy5ceGBDZytXrsy6detMIRIdHc3Fixfp0qUL69at48knnwQwOwyvtDIYDEybNo1ly5bx3HPP4eTkxIkTJ7hz5w5PPvkkkydPZsWKFTYdc9OmTXn88cdJTU0lNDS0SOvt06cPmzZtol+/flStWpVTp06RkJBAy5YtmTJlCuvXr6du3bo5XuPg4MCyZcsYM2YMjz/+OPHx8Vy8eJG2bduyZs0aevbsWaBaqlevzvr163n99ddp1KgRV69eJTIyEhcXF/72t7+xZs0ai9+r3377DYAOHToUydyekDW/56ZNm/jHP/5BhQoVOHnyJAaDgW7duhEUFPRAH+L3oM2dOxc/Pz8yMjI4d+4c0dHRFretVasWISEh+Pv7U79+fS5dukRUVBRVq1bltddeIyQkxNT7LjQ09IHOGSwPN2WsbZSxylhbKGOLjzJWSiJlrG2UscpYWyhji48yVsR6hkxrJkkTEZN33nmHX375hbFjxzJ8+HB7l1Oibdy4kQ8++IBu3boxb948e5dT4vzjH//gyJEjfPPNNzz11FNWvWb+/PksWLCAli1bsmbNmgdcodzPx8cHgK+//to0RYCIFB1lrPWUsXlTxpY+yliRB0sZaz1lbN6UsaWPMlZKC42oEMlmz549PPvss6b5TO+XnJzM/v37gayeFpK3nj174unpyfbt24mPj7d3OSVKREQER44coU2bNlY37kRESjNlbNFSxlqmjBWRR40ytmgpYy1TxorIg6QbFSLZNGnShLi4OH7++WeWLVtGenq6aV18fDzjxo0jISGBhg0b0rZtWztWWjo4OTkxcuRI7t69y6pVq+xdTomydOlSDAaDxR8TIiIPG2Vs0VLGWqaMFZFHjTK2aCljLVPGisiDpIdpi2RTuXJlxo0bxyeffMLnn3/OkiVLqF27NsnJycTExHD37l0ee+wx/v3vf+Ps7GzvckuF3r1789NPP7FixQr8/f157LHH7F2S3R05coTNmzczYMAAWrduXaB9REZGmh4YOHz4cDp37lyUJUo2ixcvZufOnfYuQ6TUU8YWPWVsbsrY0kUZK1I0lLFFTxmbmzK2dFHGSmmkERUi9xk8eDDr16+nZ8+eeHh4cPbsWa5du0ajRo0YNWoU33//vWl+P7HOtGnTKFeuHHPmzLF3KSXC559/Tr169Rg3blyB93H79m3CwsIICwvTcOQH7Ny5c6bPWkQKRxlb9JSxOSljSxdlrEjRUcYWPWVsTsrY0kUZK6WRHqYtIiIiIiIiIiIiIiJ2oxEVIiIiIiIiIiIiIiJiN7pRISIiIiIiIiIiIiIidqMbFSIiIiIiIiIiIiIiYje6USEiIiIiIiIiIiIiInajGxUiIiIiIiIiIiIiImI3ulEhIiIiIiIiIiIiIiJ2oxsVIiIiIiIiIiIiIiJiN7pRISIiIiIiIiIiIiIidqMbFSIiIiIiIiIiIiIiYjf/H3WDdHlzAeRwAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH3CAYAAADOlrxeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY7klEQVR4nOzdd3RU5fb/8c+kJ0CAQGgJYEBCL4KCgtIREK8UASkCIkXkiuDFL4IFvaBivSpFepdeBRQpiiBFkCa9E0oQCIQSID3z+4NfRmLayWSSM0ner7VYK3POM+fs2ZnMHmbPeR6L1Wq1CgAAAAAAAAAAIJu5mB0AAAAAAAAAAADIm2hSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCnczA4AAAAgL9q5c6d69uyZqWPUrVtXc+fONTx++PDhWrFihSRp69at8vf3z9T5H/Tg4xk6dKj69+/vkOPGxMSoQ4cOOnnypBYtWqRatWo55Lj2uHjxopo1a5apYwQEBOiXX35xUERwtPDwcMXFxalYsWJmh5KtEhIS9OKLL2rfvn1avny5KleubNsXGxuryZMna/ny5bp69aoCAwPVvXt3vfjii7JYLMmOVbFiRbtieO211zRo0CBJ0p07d/T000/LYrFo9erV8vPzs++BAQAAIEfgSgoAAAA4rf/97386efKk2WEgl0tISNC8efPUqlUrnT171uxwst2UKVO0Z88edezYMUmDwmq1atCgQRo3bpxCQ0MVGxurs2fP6sMPP9SHH36YZfHkz59fQ4YM0bVr1/Tuu+9m2XkAAADgHLiSAgAAwATVqlXTypUrU9x36NAh2wdzTZo00eDBg1Mc5+Pjk1XhOYXJkydr5syZZodhU6xYsVR/Z1evXrVdPVK1alV99NFHKY5zd3fPqvCQCatWrdKoUaPMDsMU586d04QJE+Tj46PXX389yb6ff/5ZmzZtUunSpfXaa6+pbNmyOnr0qMaPH6/vvvsuWVPjQf7+/po6darhOIoWLZrk9vPPP685c+bo559/1rp169SyZcuMPzgAAADkCDQpAAAATJAvX75UP9y7ffu27edChQqlOi6jPvnkE33yyScOOVZWiomJ0UcffaSFCxeaHUoSHh4eqf4uChQoYPs5rd8tnFNCQoLZIZjmww8/VExMjHr37p1sCrgdO3ZIut8wLF++vCTpkUceUWBgoPr166fff/891ed6Wn8vRri6umrw4MF67bXXNGbMGDVs2FDe3t52Hw8AAADOi+meAAAA4DQOHDigrl272hoUrq6uJkcE5F5//PGHtmzZInd3d/Xq1cvscJJp3ry5goKC9Ndff2nBggVmhwMAAIAsQpMCAAAATuGLL75Q586ddejQIUlSs2bNnPKDUyC3mDBhgiSpadOmKlKkSLL9jz/+uCTplVde0cqVK7Vv3z7Nnz9fw4cPlyQ98cQTWRqfxWJRx44dJUnTpk1TTExMlp4PAAAA5mC6JwAAgByuR48e2rVrl5o1a6bPP/9cn3zyidavX6+oqCiVKFFCXbt21UsvvaThw4drxYoVkqStW7cmm9pFki5cuKAlS5Zo165dunDhgm7duiUPDw/5+fmpZs2a6tChgxo0aJAlj+PPP/+U1WpVoUKF9Oabb6pTp04aN25clpzLbLGxsVqxYoV++uknHT9+XLdu3VKBAgVUqVIltWzZUh06dJCHh0ey+128eFHNmjWTJE2aNElPPfWUFi5cqJUrV+rs2bOyWCwqW7asOnXqpBdeeEEWi0WStHHjRs2fP19HjhzR3bt3VapUKbVo0UKvvPJKkqmq/nmO//3vf3r66ac1a9YsrVq1ShcuXJCLi4uCg4P1r3/9S507d053nY3Tp0/ru+++044dO3TlyhVZrVaVKFFC9erVU48ePfTwww+neL/E52ulSpW0dOlSffPNN1q5cqVu3bqlYsWKqVWrVvq///s/2/jo6Gh9//332rx5s44ePaobN24oNjZWBQsWVIUKFdS4cWN17tw5yVouO3fuVM+ePZOc98Hbx48flySNGzdO48ePlyQtWrRItWrVSjHmUaNGad68eZLur+cQGBho22f07/RBv/32m5YvX679+/fr2rVr8vLyUpkyZdSoUSO9+OKL8vPzSzP3aTl9+rRtOqf27dunOKZ58+Zq1KiRNm/erLfeeivJvp49e6pSpUp2n9+odu3a6YsvvtD169e1du1atW3bNsvPCQAAgOxFkwIAACCXiIuLU//+/bV7927btpCQEBUsWNDQ/SdPnqyxY8cqLi4uyfbY2FjdvXtXFy5c0Jo1a9S1a1d98MEHjgxdkuTr66t+/fqpX79+hmPOic6dO6dXX31Vp0+fTrI9PDxc27dv1/bt2zV79mxNmDBB5cqVS/U4t2/fVrdu3fTnn38m2X7o0CEdOnRIBw4c0EcffaR33nlHy5YtSzImJCREU6dO1a+//qpFixYpX758KZ4jMjJSPXv21N69e5Ns37dvn/bt26fVq1dr8uTJqf6+JkyYoAkTJig+Pj7J9rNnz+rs2bNavHixBg4cqNdee83WUEnJW2+9pR9++MF2++LFi0nWJzh8+LAGDhyoy5cvJ7vvtWvXdO3aNe3YsUMLFizQnDlzVLx48VTPldWM/J3eu3dPw4YN04YNG5LcNyYmxvb7nT17tj7//HM1bdrUrjiWLl0q6f7aEYlXTPyTxWLR+PHjNWnSJK1cuVJXr15VYGCgevTooe7du9t13owqWrSoqlSposOHD2vZsmU0KQAAAHIhmhQAAAC5xG+//aaEhAQ1bdpUPXv2VHx8vDZu3KhWrVqle99ly5bpf//7nySpRIkSevHFF1WlShXly5dPly5d0qZNm7RmzRolJCRowYIFatasmZ566imHxj9u3Di5uOTu2UjDwsLUvXt3hYWFyd3dXZ07d1ajRo1UuHBhhYWFacOGDVq1apXOnDmjnj17avny5SpWrFiKxxozZoxu3Lih+vXrq2vXrvLz89Off/6psWPHKioqSsuWLdO1a9e0efNm1axZUz179lTp0qV17tw5ffvttzp79qxOnjypGTNmaNCgQSme4+uvv1ZYWJhKly6tV155RcHBwQoNDdXs2bO1f/9+7du3T/3799fChQuTNRkevPqgYsWK6tatmypWrKiEhAQdPnxYc+fO1fnz521jUovhxIkTOnbsmGrXrq1XXnlFXl5e+vXXX9WhQwdJ0o0bN/Tyyy/r5s2bcnV1VYcOHdS4cWMVLVpUt27d0tGjRzVr1izduHFDISEh+vTTT23P9WrVqmnlypX6+eefbVftfPjhh6pWrVoGf7PGpfd3mpCQoFdffVW///67JKlJkyZ67rnnFBgYqLt37+r333/XvHnzFBERoddee03Tp0+3a9qlX375RZJUu3btNBek9vDw0Ouvv67XX3/djkfrGA0aNNDhw4e1e/du3bx5U4UKFTItFgAAADgeTQoAAIBcIiEhQXXq1NGECRNsH/Y/+eST6d7ParVq7Nixku5fzfDdd9+pdOnStv21atXSM888o5o1a2r06NGSpJ9++snhTYrc3qCQpPfff19hYWHKnz+/Zs6cqRo1aiTZ36xZM7Vs2VKvvvqqwsLCNGbMGH311VcpHuvGjRvq0KGDPv74Y1uD4NFHH5WXl5dGjRolSdq8ebOaNm2qcePGyc3t/lv/mjVrqn79+mrRooXu3bunn3/+OdUGQVhYmKpWrarZs2fbpoWqWbOmWrZsqcGDB2vDhg3av3+/li9frueff952v8OHD+vbb7+VJLVt21Yff/yx7fySVKdOHXXs2FGvvPKKdu3apQkTJqh169YpTv2UkJCgMmXKaObMmfLy8pKkJN/8nzVrlm7evClJGjZsWLIpkxo1aqT27durTZs2ioiI0MaNGxUXFyc3Nzfly5dPlStX1tGjR23jy5Qpo8qVK6eYD0dI7+90zpw5tgbFf//7X3Xp0iXJ/Z944gl17NhRXbt2VVhYmEaMGKENGzakO+3Wgy5fvqyQkBBJyrLHGhMTkySvqXFxcVHFihXTHJMYY3x8vP744w+1aNHCITECAADAOeT+/wkCAADkIS+88EKGP+wPDQ1VwYIFVaBAAXXo0CFJg+JBzz33nO3nK1euZCrOvOjs2bO2b68PGDAgWYMiUZMmTWxrBPz000+p5trd3V3Dhg1LdgXDP6+cefvtt5M0CKT7U+gknv/cuXOpxuzq6qr//e9/ydatcHV11UcffWSbJmrhwoVJ9s+YMUMJCQkqVKiQ/vvf/yY7vyT5+PjYGixWq1Vz585NNY727dvbGhT/dPXqVRUrVkz+/v6pTkFUvHhx1a1bV9L9tSsSmxpmSe3vNCEhQbNmzZIkNWzYMFmDIlHp0qU1dOhQSdJff/2VbFqo9Bw8eND2c4UKFTJ0X6PCwsLUrl27dP8ZmTbqwRgPHDiQJfECAADAPDQpAAAAcpHUFvRNS2BgoFatWqXdu3cnWxz3QQUKFLB9UBwTE2NviHnW5s2bZbVaJSndxccbNmwo6f6H1rt27UpxTOXKlVW4cOFk2/38/Gzfqi9dunSqTaciRYpIur/+QWoaNGighx56KMV9BQsWtH2j/eDBgwoLC5N0/8qc3377TVL6UwmVLl1a5cuXlyTb1QMpSet5PWbMGP3222/asmVLmlcTFC1a1Paz2c/f1B7P8ePH9ddff0ky/hyRZFsA26jEqygkqWzZshm6rxkejDGtphoAAAByJqZ7AgAAyEVKliyZqfsnfrv7zp07unDhgs6fP6/Tp0/r6NGj2rNnj6KioiTJ9mE7jHtw6pvEKyWMuHDhQorbAwICUtxusVjk7u6u2NhY+fv7p3pcDw+PdM9du3btNPdXqVJFK1eulNVqVUhIiPz9/XXx4kXdunVL0v11D9KbyifRxYsXU91XokSJdO+f+NyNjY3VpUuXdOHCBYWEhOjEiRPat2+fTpw4YRubkJBgKKasktrf6ZEjR2w/jxkzRmPGjDF0vNSeI6lJbChJSnaVjKMEBATYrhzKLA8PD3l5eSkqKkpXr151yDEBAADgPGhSAAAA5BLu7u6GPnhOzenTpzVz5kxt2bIlxSmG/jmtUE5y6tQpxcbGprq/TJkytqmLssqNGzfsut/t27dT3G4k3pSmWcqI1BbtTuTn52f7OfGDb3sfZ1xcnO7cuaP8+fMn25fStgdFRkZq/vz5WrNmjU6cOKG4uLhkY1xcXExvTkhp/506+jmSmgevnkkvt86iQIECioqK0t27d80OBQAAAA5GkwIAACCXyEwTYdmyZRo5cmSSD3cLFSqkcuXKqUKFCqpZs6YaNGig1q1bpzk9kLPq37+/QkNDU90/Z84c1atXL0tjiI+Pt/28ZMkSwwsdP9gIeJCrq6tD4kpLeud48DElfvD+4Lbnn39ePXr0MHy+1KaGSuu5feHCBfXp0yfJNEDu7u4KCgpSuXLlVLVqVdWtW1fff/+95s+fbzgWexhpgqT1WB7M3fvvv69HHnnE0Hk9PT0NjUsphux4HjlCYsw5uVkKAACAlNGkAAAAyOOOHz9ua1Dky5dPgwYNUosWLRQYGJhkXEJCgm26J2RcwYIFbT8XL15cxYsXNzEaYxKnbUrNg9/8T5xa6sHH6erqqsqVK2dNcP/f0KFDbQ2KZ599Vi+++KKqVauWrAn0z8W9M+LBD8bTmuosIiLC7nNISXNXoECBLMvdg1fhREZGZsk5HC0xzqy+4gkAAADZjyYFAABAHrdo0SLbFRQjR45Uu3btUhx3+fJlp5guxx6Omhs/MypUqGD7+c8//9TTTz+d6tg///xTO3fuVGBgoGrXrm1oTYascOzYsTT3Hzx4UNL9KxcSF8AuXbq0vL29FRkZqf3796d7jilTpsjX11dlypRR/fr1MxTfwYMH9eeff0qS6tWrpy+//DLVsZcuXcrQsR/04NUGaTXqEhe9ttc/nyP/+te/Uh0bHh6u+fPnKyAgQJUrV1alSpUMn+fBabzCwsIUFBRkX8DZJCoqytYAygnNPQAAAGSMi9kBAAAAwFwPTpNTtWrVVMetWrXK9nNKc/4jbU8++aTt5wULFqQ59rPPPtOXX36pN954I8OLIjvSxo0bdefOnRT3hYeHa9OmTZKkJ554wra2gbu7u23qrBMnTmj37t2pHn/Hjh368ssv9f7772vSpEkZju/8+fO2n9N67l68eFF79+613X5wWiXp70W3U+Pr65vkWCkJDw/XgQMH0jxOeqpXr65ChQpJklavXp3mlRlz587VuHHjNHz4cG3cuDFD53nooYdsP6c1DZqzeDBGZ2+oAAAAIONoUgAAAORxhQsXtv28ZcuWFMds3rxZEyZMsN2OiYnJ8rhym+rVq+uxxx6TJG3fvj3VD+VnzJhh+2C/cuXKevTRR7Mtxn+6ffu23n///WRX0MTExGj48OG29UleeumlJPsfvD1ixIgUrzC4fv26Ro4cabvds2fPDMf34HN3x44dKTbPwsLCNHjw4CQLp//z+fvgQtYprblSsWJF28+LFi1Ktgh7XFycPvjggzQXZzfCw8ND3bt3lyTdvHlT//d//5fi39qePXs0ffp0SZKXl5c6d+6cofNUr17d9vPRo0czEXH2ePCKnpo1a5oYCQAAALIC0z0BAADkca1bt9bq1aslSV999ZXCwsLUoEED5c+fX6GhoVq3bp02bNiQZC7+1L5dj7R9+OGHev7553Xnzh199dVX+uOPP/T8888rICBAV69e1erVq7V+/XpJ969IGDVqlOkLBa9Zs0aXLl1Sz549FRAQoLNnz2rWrFk6cuSIJKlt27Zq0KBBkvs88cQT6tq1qxYsWKDz58+rbdu26tmzp+rWrStJOnTokGbOnKmrV69Kklq0aKHmzZtnOLY6derI399fYWFhOnr0qHr16qXu3bsrICBAN2/e1B9//KGlS5cmWTtDSr52ROJ6GtL9JlHBggWVkJCgOnXqyGKx6JFHHlGZMmV0/vx5HTx4UC+99JJ69eolf39/nTlzRvPmzdPhw4dtYzLjlVde0a+//qrDhw9r06ZNatu2rXr16qVKlSrp9u3b2rFjh+bPn6/o6GhJ99fkeHD6JiP8/f1Vvnx5nT59OtNXf2SHxCm93NzcTG3aAQAAIGvQpAAAAMjjmjVrphdeeMH2DfGZM2dq5syZycZ16NBBt27d0s8//6zQ0FBFRkbK29vbhIhzroceekjfffed/v3vfys0NFRbt27V1q1bk40rWLCgvvjiC9WoUcOEKP/WvHlznTlzRnv37k0yXVKijh076oMPPkjxvu+99548PT01e/Zs3bp1S+PGjUtx3NNPP63PP//crvg8PT31+eefa8CAAYqKitLu3btTnF7qoYceUseOHfXFF19Ikk6dOqXatWvb9levXl0lSpTQ5cuXtWvXLnXt2lXS/emuSpcuLVdXV33++efq27evIiIiUjxPs2bN1K5dOw0aNMiux/LgY5o+fbqGDBmi33//XWfOnNH777+fbJyrq6tef/11u65Ake7nfeLEiTpw4IAiIiJUoECBTMWdlbZt2ybp/pRpidOKAQAAIPdguicAAABo1KhR+uqrr9SgQQMVKlRIrq6u8vHxUbly5dSuXTvNmzdPY8aMUZMmTSRJsbGx2rBhg8lR50yVK1fW2rVrNXLkSDVo0EBFixaVu7u78uXLp6pVq+rf//631q5dq4YNG5odqooUKaJly5Zp4MCBeuihh+Tp6alSpUrp6aef1pw5c/TRRx/J3d09xfu6urpqxIgRWrlypbp06aJy5crJx8dH7u7uKl68uFq2bKkpU6Zo3Lhx8vLysjvGJ554QitWrFCnTp0UGBgod3d3ubu7q1ixYmrQoIFGjx6t77//Xl27drU11dauXZvkGF5eXpo5c6aaNm2qQoUKyd3d3da0SFSrVi2tXbtWL7/8soKCguTp6alChQqpXr16+uKLL/Ttt9+mmouMKly4sGbPnq2JEyeqdevWKlWqlDw9PeXp6amHHnpIL7zwglasWKEBAwbYfY7nnntOFotF8fHxTrGwfGrOnTunU6dOSZLatWtnbjAAAADIEhbrg9ftAwAAAMjTLl68qGbNmkmSXnjhBY0aNcrkiJBV/v3vf2vjxo1q2LChpk6danY4KRo/frzGjRunsmXLau3atXJ1dTU7JAAAADgYV1IAAAAAQB40cOBASdLWrVt18eJFk6NJLi4uTkuWLJF0f60OGhQAAAC5E00KAAAAAMiDqlatqsaNGyshIUFz5swxO5xk1q1bp8uXLysgIEBt27Y1OxwAAABkEZoUAAAAAJBHDRs2TJ6enlq8eLGuXbtmdjg2CQkJ+vbbbyVJw4cPl5ubm8kRAQAAIKvQpAAAAACAPKp8+fJ64403FBkZqfHjx5sdjs3333+vU6dO6dlnn9XTTz9tdjgAAADIQjQpAAAAACAP69Wrlx577DEtXrxYx44dMzsc3blzR19++aX8/f313nvvmR0OAAAAspjFarVazQ4CAAAAAAAAAADkPVxJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKZwMzsAAM7j4sWLatasWYr7LBaLChYsqJIlS6phw4Z66aWX5Ofnl80ROq+FCxfq/fff14cffqhOnTqZHQ4AwETUU+MuX76sGTNm6LffftOlS5ckSYGBgWrcuLFefvllFSlSxOQIAQBmoqYaFxISoilTpmj79u26du2aChYsqJo1a6p79+5q0KCB2eEBQJosVqvVanYQAJzDg28Ag4ODlT9/ftu++Ph43bp1SxcvXlRcXJwKFy6s2bNnq2LFimaF6zQOHDigl156SXfv3qVJAQCgnhq0e/duvfrqq7p9+7ZcXV1VpkwZJSQk6OLFi4qPj5e/v7+mTZumSpUqmR0qAMAk1FRjfvvtN7322muKioqSt7e3ypYtq/DwcF29elWS9PLLL+utt94yOUoASB1NCgA2D74BnDNnjurVq5dszI0bNzR8+HD9+uuveuihh7R27Vq5uOTdmeN27typQYMG6datW5JEkwIAQD014Pbt22rZsqXCw8P11FNP6eOPP1axYsUkSRcuXNCwYcO0d+9eBQYG6scff5Snp6fJEQMAzEBNTV94eLhatWqlW7duqU2bNvrvf/+rAgUKSJJWr16tt956S/Hx8Ro7dqxatmxpcrQAkLK886oNwCEKFy6sTz75RB4eHgoJCdHWrVvNDskU0dHRGjdunHr37m1rUAAAYFRer6fLly9XeHi4ihUrpq+//trWoJCk0qVLa8KECSpYsKAuXryon376ycRIAQDOLq/X1KVLl+rWrVsKCAjQJ598YmtQSNK//vUv25foFi5caFaIAJAumhQAMqxw4cKqUKGCJOnkyZMmR5P9zp07p5YtW2r8+PGSpCFDhiggIMDkqAAAOU1erqc7d+6UJDVp0iTJ1B2J/Pz89Mgjj0iSDh48mK2xAQBynrxcUwMDA/Xss8+qW7du8vDwSLY/cfqrxLWfAMAZsXA2ALvExcVJkvLly5fivjVr1uinn37S4cOHdfPmTbm5ualYsWKqV6+eevfuraCgoBTvt2LFCi1ZskRnz55VQkKCqlWrpn79+snd3V09e/ZU3bp1NXfu3HTj27lzp3r27Gn48bRv316ffPKJobGXL1/WX3/9pVq1aum9995TtWrVtGTJEsPnAgAgUV6tp6+++qpatmyZYvyJEmelTUhIMHx+AEDelVdr6jPPPKNnnnkm1f2HDh2SJJUtW9bwuQEgu9GkAJBh58+f18mTJ+Xi4qKnnnoqyb6oqCj179/f9g3JgIAABQcH6/r16woJCVFISIhWr16tefPmqUqVKrb7RUdHa/Dgwdq0aZOk+2+g8uXLp927d+v3339XixYtMhRjgQIFVLt2bcPjH3roIcNjS5QooSlTpqhRo0YZigkAgAfl5Xpao0YN1ahRI9X94eHh2rVrlyTp4YcfNnx+AEDelJdrampu376tOXPmaPny5XJzc1O/fv0ydTwAyEo0KQAYEh8fr9u3b2vfvn369NNPlZCQoAEDBiSb5mjq1KnauXOnChcurClTpiT5AOLAgQMaOHCgwsLCNGnSJI0dO9a2b8KECdq0aZMKFSqksWPH2hZEu3LlioYOHaoNGzZkKN4qVapowYIFmXjEqStbtizfQgEA2IV6asxHH32kyMhIeXt7s8gnACBF1NSUrVu3TuPGjdO5c+cUExOjkiVL6oMPPtBjjz2W5ecGAHvRpACQovQuQ+3Xr5+GDBmSbPv27dvl4uKi1157Ldk3JGvUqKGuXbtq7NixOnHihG377du3NXPmTEnSp59+anvzJ0nFixfXxIkT1bp1a4WFhWXiEQEAkP2opxn37bffas2aNZKkgQMHqkiRIiZHBABwBtRUYw4cOJBkXY5bt25p06ZNevTRR1NcBwoAnAFNCgApCg4OTvIGJiEhQXfv3rV9G2PWrFmKjIzU22+/LVdXV9u4BQsWKDY2VhaLJcXjent7S7p/yW2izZs3KyYmRqVKlVLjxo2T3adAgQLq0KGDJk+e7KBHBwBA9qCeZsz48eM1btw4SVKzZs2YmgIAYENNNaZHjx7697//rTt37mjbtm367LPPtHDhQh06dEiLFi2SmxsfBQJwPrwyAUjRu+++m+TbIoliYmK0YsUKjR49Wt99953i4+P1wQcfJBnj7u6uW7duaf/+/QoJCdGFCxcUEhKio0eP6tq1a5KSLoKZ+C2PihUrphpPtWrVMhT/kSNHNHr0aMPjGzVqpAEDBmToHAAApId6akxcXJxGjRqlRYsWSZKefPJJffXVV6l+oAQAyHuoqcaUKFFCkuTj46P27durZs2aateunQ4dOqRVq1apQ4cOGT4mAGQ1mhQAMsTDw0MvvPCCwsLCNG7cOC1evFivvPKKSpYsKUm6c+eOPvroI61evVqxsbG2+7m7u6tq1aqqXLmyfvvttyTHvHHjhqT7b6JSk9HLUiMiIrR3717D41ljAgCQnainf7tz545ef/11bdu2TZL0zDPP6NNPP5WHh0eGjwUAyHuoqWkrV66cWrRooTVr1mjXrl00KQA4JZoUAOzSrFkzjRs3TvHx8Tpy5IjtDeDAgQO1c+dOeXl56cUXX1TNmjVVoUIFlS1bVu7u7lq8eHGyN4CJl9feuXMn1fPdvXs3Q/HVq1dPx48fz+CjAgAge+X1enr58mX169fPNg94nz599H//939cQQEAyLC8WlNv3rypixcvqlSpUvLz80txTOJi4s64hgYASDQpANjpwQ8PrFarJGn//v3auXOnJGny5Ml6/PHHk93v8uXLybYFBwdLUpKFyv7p2LFjmYoXAABnlJfr6ZUrV9SjRw+dP39erq6ueu+999S1a1ezwwIA5FB5taZ27NhRFy5c0JtvvpnqWk6hoaGS7i/6DQDOyMXsAADkTJs3b5Z0/41g4lycFy9etO1PaX7OyMhI/fDDD5Kk+Ph42/bGjRvL3d1df/31l7Zu3ZrsftHR0Vq5cqUjwwcAwCnk1XoaExOjV199VefPn5e7u7u++eYbGhQAgEzJqzW1QYMGkqSlS5cmmc4q0cWLF7Vx40ZJUtOmTbM1NgAwiiYFgAyxWq1av369Jk2aJElq2bKlbWGucuXK2cZNmDAhyRukU6dOqV+/fgoJCZF0/81goqJFi6pbt26SpOHDhyeZp/PGjRsaMmRIkjeXAADkdHm9nk6dOlWHDx+WJL3//vtq0aKFyREBAHKqvF5T+/btKy8vL4WEhGjo0KEKDw+37Tty5Ij69OmjqKgoPfbYY2rWrJmJkQJA6izWxGvgAOR5Fy9etL1pCQ4OTrYQWFxcnEJDQ3X9+nVJUtWqVTV9+nQVLlzYNmbIkCFau3atJKlQoUIKDAy0zZEp3f+WR+LCmHv27LGdIyoqSv369dOuXbskSQ899JDy5cunkydPKi4uTlWqVNGhQ4f0xBNPaNasWVmXBDs1bdpUoaGh+vDDD9WpUyezwwEAmIh6mraYmBg9+eSTunXrltzc3FSjRo00xzdq1EgDBgzIpugAAM6EmmrMpk2b9MYbbygyMlIeHh4KCgpSdHS0rQFTq1YtTZw4MdU1KwDAbKxJASBFKc296enpKT8/PzVp0kRPP/20nnvuObm5JX0Z+fLLL1W/fn0tXrxY58+f1/Hjx1W4cGE1adJEXbp0UePGjdWkSRNdunRJv/zyi5577jlJkpeXl2bMmKHvvvtOq1atUkhIiCwWix599FG9+uqr2rdvnw4dOiQvL69sefwAADgC9TS5EydO6NatW5Luf7j04LdTU1K2bNnsCAsA4OSoqalr0qSJvv/+e02fPl1bt27VmTNn5OXlpTp16ui5557T888/L3d3d7PDBIBUcSUFgBzh008/1YwZM9S5c2eNHj3a7HAAAMiRqKcAADgGNRUAHIc1KQCY7uzZs2rcuLFeeuklxcTEJNtvtVr122+/SZKqVKmS3eEBAJAjUE8BAHAMaioAZC+aFABMV7p0aUVHR2vHjh364osvFBUVZdsXERGhDz74QCdPnpSfn59atWplYqQAADgv6ikAAI5BTQWA7MV0TwCcwk8//aT//Oc/io+PV758+VSmTBnFx8fr/PnzioqKkq+vr8aNG6fHH3/c7FABAHBa1FMAAByDmgoA2YcmBQCncebMGc2aNUt79uzRX3/9JUkqWbKkGjVqpBdffFGlSpUyOUIAAJwf9RQAAMegpgJA9qBJAQAAAAAAAAAATMGaFAAAAAAAAAAAwBRuZgeQ0509e1ZRUVHy8vJSUFCQ2eEAAJBjUVMBAHAMaioAAMhJaFJkUlRUlO7du2d2GAAA5HjUVAAAHIOaCgAAchKmewIAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFG5mBwAAAAAAAAAAGREXF6c5c+bo6NGjqly5snr27Ck3Nz7q/CfyhJyAZyQAAAAAZBM+KDCGPAEA0jN37lzNmzdPkrR3715ZLBb17t3b5KicD3lCTsB0TwAAAACQTRI/KNi7d6/mzZunuXPnmh2SUyJPAID0/P7772nexn3kCTkBTQoAAAAAyCZ8UGAMeQIApCc6OjrN27iPPCEn4HpZAACAPI5pVYDswwcFxpAnSNQnAADyCqo7AABAHsc8tQCA9JjRMKA+AQCQN9CkAAAAyONSmlaFD4EAAA8yo2GQ0+oTV34YQ56MIU8A8hJe3QAAAPI4plUBMmd/i5ZKiIw0NDbK3U1ysfx9+9x57X2yoaH7unh7q9aGdXbFaLaM5EjKu3lyZmY0DHJafeLKD2PMyFNO/MCf5xOAvMS5X5EBAAAAwMklREYqISrK2GA3H0muf9+2Jhi/bw6WoRxJeTZPziynNQzMkNOu/DCLGXnKiR/483wCkJfQpECOlRO/CZFX8LsBAKSHWmEMecp93NO5nVVy2nPJjDzltBzB+dDIMcaMPOXED/zNyJPZr4NcdWdMduUpJ+cIOQ/vuJBj5cRvQpiBBe7SZ/YbMQDIi6gVxuS0PCF9lWLjdMnVNcnt7JDTnktm5Cmn5SgneuGTlYqKMf67vHstIsnti9ci1HbUUkP39fJw06Lh7TISHnIxGkjGmP06yFV3xpAn5EZ8CoccKyd+E8IMLHCXPrPfiAFAXkStMCan5YnGf/qaR8dIks67uqpMfLztthEuXl52nzenPZfMyFNOy1FOFBUTp+jYeMPjrbImu52R+yN7ZPRb3Qn/+FZ3Qh759ntOwOugMbzfSR85Qkbx7ECOxTchjGGBu/TxRgxAbpNdl4C7FS6kGqtX2RUjtcKYnJYnGv/pc5XUMgMfuDtKTnsumZGnnJYjZI+M1NTMTD3zYE3N6BUn9nLU1SYZ/VZ3RauHQr08/74dE6MEE14Xs1tOmKKH10FjeL+TPnKEjKJJAeRyvMlIHzkCkNtk1yXgCZF/j8ntU3g4qlZkV57MmuaExn/2ye1/c46SkTzltRzlhIa2XNzSvp0NMlRTMzGlyoM1NaNXnOQ0Zl1RZrbsen+Wk3OUU/B+J33kCBlFkwJOI6cskJQXL1njP8FZIy8+lwDkXhmewsPFNdnt3PyBTKLcnica/9kntz+XHCUjecprOTKjoZ1RLoXLKOHu9SS3nZkZC77nRGZdUZbT8HxKX2ZylJlmTk57v2NvnvJSjmA+Pg2D08jom2T3f7xJds+mhX/MvmTNjG885cT/BGfXZdmZaXiZ/VwCgERm/CfYGT54MmMKj4xyhjwhd+C5lD5y5HxcAutIkqwRV2UpUMx221mZseB7Xpbbr5RyxPMpt3/hkL85Y8gTcgKaFMixzHqRNfuStexq5uT0bzxlJE+ZaXjlpQUsAeReZtRUZ/jgKbtqRaZqqhPkCbkDz6X0kaO0mdHQtri4yLXMY9lwJsfIzDRGyLgMXSmVAxdhd8TzKbcvVu+ov7mMNnPu3Uj6JZfQG5FOPR2nI/KUXTmS8tYMG/gbTQrkWGbNY5nTLlnLqx88ZYRZDS+zn0sZvSonM3LyQoDZlSczciTxBhD3mfGhSk774MmsWmF2nrJzOs6cXCtyArOfSzkBOUob38RNH9MYOTEnWN8ko0x5PuWwPDkqRxleB6ZQaenOtSS3nbmZ44g85fYcwXzO/WoDpIE3gMbwwVP6zPr2hdmLoWZ4HuJMnSvnLgSYXXnKyTlyZqz9Ygw1NX159dux2TkdJ6+DgHPLq6+DyB2c4Wr/nIA8GZPTvphpBnKEjOJ/6cjzctoHyxnFB0/pM+vbF86wdgeQ27H2CxyFemoM37QGci9eB5GT8YGpMeTJmJz2xUwzkCNkFE0K5Hl8sAyz8C0VIOux9guQvfimNQDAGfGBqTHkCYBZaFI4IaamcG58sAxH4VsqQNYza+0XajnyKr5pDQAAACCj+N+yE2JqCufGB8twFL6lAuRe1HIAAAAAAIxxMTsAJJfS1BRwHokfLLtVbSPXMo/J4sKfEQAgKWo5AAAAAADGcCWFEzJragoAAJzd/hYtlRAZaXh8lLub5GL5+/a589r7ZEND93Xx9latDesyHKNELQcAAAAAwCiaFAAAIMdIiIxUQlSU8Tu4+ej+LPn/nzUhY/cHAAAAAABZiiYFbFjkEwAAAAAAAACQnfgEGjYs8gkAyG3c07kNAAAAAADMRZMim2RkDm2z5s9OaZFPmhQAgJysUmycLrm6JrkNAAAAAACcB02KbJKhObRNmj+bRT4BALlN8+gYSdJ5V1eViY+33TbCxcsrq8ICAAAAAAD/H00KJ5SZqSn4QAUAgL+5SmqZgcYEAAAAAADIXjQpnBBTUwAA4Fxe+GSlomKM1+O71yKS3L54LUJtRy1N935eHm5aNLxdRsMDAAAAACDHoknhhDIzNcWDsusDFYkPVQAAuVtUTJyiY+MNj7fKmux2Ru4PAAAAAEBeQZPCCTlqago+UAEAAAAAAAAAODMXswOAE3FxS/s2AAAAAAAAAAAORJMCNi6Fy6R5GwAAAAAAAAAAR+Kr8rBxCawjSbJGXJWlQDHbbQAAkEFcnQgAAAAAgCH8jxk2FhcXuZZ5zOwwAADI8VwKl1HC3etJbgMAAAAAgORoUgAAADgYVycCAAAAAGAMTQoAAAAH4+pEAAAAAACMYeFsAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATOFmdgBGhYeHa8qUKdq0aZMuXbokLy8v1ahRQ/3791e9evWSjd++fbumTp2qY8eOKSoqSuXKlVOXLl3UsWNHWSwWEx4BAAAAAAAAAAB4UI64kuL06dN67rnnNHPmTMXGxqpRo0YKCAjQ1q1b1atXL23cuDHJ+Hnz5ql37976448/VKVKFdWrV0+nT5/Wu+++q+HDh5v0KAAAAAAAAAAAwIOc/kqKuLg4vfHGGwoLC9NLL72kYcOGydXVVZK0dOlSvfPOOxo+fLi2b98uDw8PnTlzRh9++KF8fX01d+5cVapUSZJ06dIl9erVSytXrlSjRo30zDPPmPmwAAAAAAAAAADI85z+SooNGzbo+PHjeuyxxzRixAhbg0KSOnbsqKeeekq+vr46cuSIJGnq1KlKSEhQnz59bA0KSSpVqpRGjhwpSZoxY0b2PggAAAAAAAAAAJCM019JsXbtWklS3759U9w/bdq0JLd//fVXSdLTTz+dbGz9+vXl6+urgwcP6tq1aypatKhjgwUAAAAAAAAAAIY5fZPi0KFDkqRatWrp5s2b+vHHH3Xs2DG5ubnp0UcfVcuWLW1XV1y7dk3h4eHy9PRUUFBQsmO5urqqXLly2r9/v44fP06TAgAAAAAAAAAAEzl1kyImJkahoaHy9PTU4cOHNXToUN24ccO2f968eapataomTZqkYsWK6cqVK5Ikf39/WSyWFI/p7+8vSQoLC3NorFarVfHx8cm2Pzg9VV6RUh7SQo6MIU/G5LU8kSNjyJMxqeUpu3ORUk3l92EMeTImr+WJHBlDnozhvX760soRNdUc/H2njxwZQ56MoVakj+eSMc7yf1RkPaduUty5c0eSlJCQoNdee001a9bUm2++qaCgIJ04cUIfffSRDh48qIEDB2rx4sWKjIyUJHl7e6d6TE9PT0nS3bt3HRprZGSk9u/fn2Sbi4uLHnnkEYeeJyc4cOCAEhISDI0lR8aQJ2PyYp7IkTHkyZjU8lSnTp1sjeOfNZXfhzHkyZi8mCdyZAx5Mob3+ulLK0fUVHPw950+cmQMeTKGWpE+nkvGOMv/UZH1nHrh7JiYGElSbGysypQpo2nTpqlatWrKly+fHnnkEc2cOVNFixbVwYMH9fPPP8vFxfjDsVqtWRU2AAAAAAAAAAAwwKmvpHjwioju3bvLzS1puAUKFNBzzz2nGTNmaMeOHXrhhRckSVFRUakeMzo6WpLk4+Pj8FgrVqzo0GPmVDVq1DA7BKdHjowhT+kjR8aQJ2OcJU/U1Puc5ffh7MhT+siRMeTJGPKUPmfKETX1Pmf6nTgrcmQMeTKGPKWPHBlDnvIOp25S5M+fXx4eHoqJiVFgYGCKYxK3h4eHq3jx4pLuL6CdmqtXr0qSihUr5tBYLRYL86H9f+QhfeTIGPKUPnJkDHkyxlnyRE29jxwYQ57SR46MIU/GkKf0OVOOqKn3kYP0kSNjyJMx5Cl95MgY8pR3OPV0T66urqpQoYIk2RbF/qfEhkSRIkVUqFAhFS9eXJGRkbpw4UKysfHx8Tpz5owkKTg4OIuiBgAAAAAAAAAARjh1k0KSGjduLElatWpVsn1Wq1VbtmyRJNWtWzfJ+PXr1ycbv23bNkVERKhq1aoOv5ICAAAAAAAAAABkjNM3Kbp06SJfX19t375dkyZNsi14bbVaNXbsWB06dEhly5ZVkyZNJEndunWTm5ubJk6cqAMHDtiOc+nSJY0ePVqSNGDAgOx/IAAAAAAAAAAAIAmnXpNCur92xJdffqlBgwbpq6++0vLlyxUcHKwTJ07o3LlzKlSokL744gt5eHhIkipVqqQ33nhDn3/+ubp27aq6devK09NTO3fu1L1799SlSxc9/fTTJj8qAAAAAAAAAADg9E0KSWrYsKFWrVqlSZMmafv27fr1119VtGhRde7cWa+88kqyRbX79u2roKAgzZo1S3/++acsFovKly+v7t27q23btiY9CgAAAAAAAAAA8KAc0aSQpLJly2rMmDGGxzdr1kzNmjXLwogAAAAAAAAAAEBmOP2aFAAAAAAAAAAAIHeiSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUbo44iNVqVXh4uK5fv67bt2/L09NTRYsWVcmSJR1xeAAAAAAAAAAAkAvZ3aS4evWq1q1bp23btumPP/7QvXv3ko3x8vJS7dq11ahRI7Vp00ZFihTJVLAAAAAAAAAAACD3yHCT4vTp05owYYLWr1+v+Ph4Wa3WVMdGRkZq27Zt2r59uz777DO1a9dOr7zyikqXLp2poAEAAAAAAAAAQM5nuEkRERGhL774QkuXLlV8fLzy58+vxx9/XHXq1FFwcLCCgoLk6+srb29v3bp1Szdu3NCVK1e0d+9e7dmzR/v27dPSpUu1cuVKdejQQcOGDVP+/Pmz8rEBAAAAAAAAAAAnZqhJsW3bNg0fPlxhYWF6/PHH1aVLFzVr1kzu7u4pjvfz85Ofn5/Kly+v+vXrS5Lu3Lmj77//XkuWLNHixYu1detWffzxx3r88ccd92gAAAAAAAAAAECO4WJkUN++fVWqVCnNmzdPs2bNUqtWrVJtUKQmf/786t69u1auXKkZM2aoQIECevnll+0KGgAAAAAAAAAA5HyGrqT45JNP1LZtW4edtH79+lq5cqVWrFjhsGMCAAAAAAAAAICcxdCVFI5sUCSyWCzq0KGDw48LAAAAAAAAAAByBkNNCgAAAAAAAAAAAEcz1KR47bXX9PXXX2dxKAAAAAAAAAAAIC8xtCbFxo0bdePGjVT3r1y5UkWKFNFTTz3lsMAAAAAAAAAAAEDu5pDpnoYPH67Jkyc74lAAAAAAAAAAACCPcNiaFFar1VGHAgAAAAAAAAAAeQALZwMAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKN6MD9+7dq8qVK6e4z2KxpLk/ccyRI0cyHiEAAAAAAAAAAMiVDDcprFZrVsYBAAAAAAAAAADyGENNijFjxmR1HAAAAAAAAAAAII8x1KRo3759VscBAAAAAAAAAADyGBbOBgAAAAAAAAAApqBJAQAAAAAAAAAATGG4SbFu3Tq1b99ederUUYcOHfTzzz9nZVwAAAAAAAAAACCXM9SkWLZsmYYMGSJPT08NGTJEHh4eeu2117Ry5cosDg8AAAAAAAAAAORWhpoUkyZNUoECBTR9+nT16NFD06ZNU4ECBTRx4sSsjg8AAAAAAAAAAORShpoUly9fVmBgoPLlyydJyp8/vwIDA3Xp0qUsDQ4AAAAAAAAAAORehpoUlStX1qlTp3T+/HlJ0vnz53Xq1ClVrVo1S4MDAAAAAAAAAAC5l6EmxfDhw+Xq6qoXXnhBr7/+ul544QW5urpq+PDhWR0fAAAAAAAAAADIpQw1KWrXrq3Vq1erTZs2iomJ0XPPPac1a9aoVq1aWRweAAAAAAAAAADIrdyMDgwMDNS7776blbEAAAAAAAAAAIA8xNCVFAAAAAAAAAAAAI5mqEkxceJExcTEOPTEUVFRGj9+vEOPCQAAAAAAAAAAcg7DTYrWrVtr9erVmT5hXFyclixZohYtWmjq1KmZPh4AAAAAAAAAAMiZDDUpFi9eLB8fHw0bNkytWrXSjBkzFBYWlqEThYSE6PPPP1ejRo00cuRI+fv7a9myZXYFDQAAAAAAAAAAcj5DC2dXqlRJK1as0PTp0zV58mR9/vnn+uKLL1SpUiXVqVNHwcHBKlOmjHx9feXl5aWIiAjduHFDly9f1r59+7Rnzx5dvHhRVqtVBQoU0Ouvv65+/frJzc3wut0AAAAAAAAAACCXMdwlcHNz0yuvvKJOnTpp2rRpWrZsmY4cOaIjR47IYrGkej+r1SpJKliwoHr06KFevXqpQIECmY8cAAAAAAAAAADkaBm+lMHPz0/Dhg3T4MGDtXXrVu3YsUM7d+7UxYsXFRkZaRvn7u6usmXLqnbt2mrYsKEaNmwoDw8PhwYPAAAAAAAAAAByLrvnW/L09FSzZs3UrFkz27bIyEjdvn1bHh4eKliwoFxcDC15AQAAAAAAAAAA8iCHLgrh7e0tb29vRx4SAAAAAAAAAADkUlzqAAAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFM4rEkRHh6u3bt3a9OmTZKkhIQE3b1711GHBwAAAAAAAAAAuYxbZg+wY8cOff311zpw4IAkyWKx6MiRIwoNDVX79u3VvXt3DRkyRBaLJdPBAgAAAAAAAACA3CNTV1LMmzdPffr00Z9//imr1Wr7J0mXL1/WnTt3NGXKFP3nP/9xSLAAAAAAAAAAACD3sLtJceTIEX388cdycXFR3759tXr1atWqVcu2v3r16ho8eLBcXV31008/adWqVY6IFwAAAAAAAAAAux07dkwffvih2rRpo0cffVTVq1dXo0aN1LdvX3333XeKiooyO8QsUbFiRVWsWFHbt283O5Qk7G5STJ8+XQkJCRoxYoTefPNNVahQQS4ufx/Oy8tLr776qt5//31ZrVYtX77cIQEDAAAAAAAAAGCPsWPHqn379po7d64uX76s0qVLq3LlynJxcdFvv/2m0aNHq1WrVjp8+LDZoeYZdjcp/vjjDxUsWFDdunVLc1zHjh3l5+eno0eP2nsqAAAAAAAAAAAyZdmyZZowYYK8vLz0zTffaNeuXVqxYoUWL16sTZs26ccff1StWrX0119/qU+fPgoPDzc75DzB7iZFeHi4Spcune6C2BaLRQEBAbp79669pwIAAAAAAAAAIFMmTZokSRo2bJhatWolV1fXJPvLly+viRMnqkiRIrpx44bmzJljRph5jt1NCl9fX/3111+Gxl65ckW+vr72ngoAAAAAAAAAALvdunVL58+flyTVrFkz1XF+fn5q3ry5JOnAgQPZElte52bvHatVq6bffvtN27dvV/369VMdt2nTJl29elUNGza091QAAAAAAAAAANjNze3vj8I3bdqkKlWqpDp20KBB6tmzp4oUKZJke1xcnNasWaOffvpJhw8f1s2bN+Xm5qZixYqpXr166t27t4KCgpLcp0ePHtq1a5dmzpyp/Pnza+LEidq7d6+io6MVFBSkXr16qV27drJarVq6dKkWLFigM2fOyNXVVTVr1tTrr7+uWrVqJTlm06ZNFRoaqpUrV+rKlSuaNGmSjh8/Lg8PD1WsWFE9e/a0NVqMunbtmmbMmKFff/1VoaGhcnFxUbly5dSmTRt1795dnp6eGTpeRtjdpOjcubO2bNmid999V99++60qVaqUbMyOHTs0YsQIWSwWdejQIVOBAgAAAAAAAABgj3z58ql27drau3evxo0bpwsXLuj5559X7dq1k0375O/vL39//yTboqKi1L9/f+3cuVOSFBAQoODgYF2/fl0hISEKCQnR6tWrNW/evBQbID/99JOWLVsmDw8PPfTQQ7p06ZKOHDmit956S/fu3dPevXu1evVqFSlSREFBQTp58qS2bdumP/74Q0uWLEnx8/dly5Zp7ty58vDwUIUKFXTt2jXt3LlTO3fuVI8ePfTuu+8ays2ePXs0cOBA3bx5U+7u7nrooYdktVp1+PBhHTp0SN9//72mTZuWLCeOYvd0T82bN9ezzz6rS5cuqX379vrXv/6lkydPSpIGDx6sNm3a6OWXX9bNmzfVuHFjtWrVymFBAwAAAAAAAACQEe+99558fHxktVq1YsUKvfjii6pbt6769++vKVOm6M8//1RCQkKK9506dap27typwoULa8mSJfrll1+0bNky/frrr1qyZIn8/f11794927oX/7Ro0SI1a9ZMW7Zs0YoVK7RlyxY9+eSTkqTRo0dr/fr1+uyzz7R9+3atWLFC69atU8mSJRUTE6PZs2eneMy5c+eqfv36+vXXX7V8+XJt3rxZo0ePlpubm+bOnas1a9akm5MrV67YGhSdO3fW9u3btWbNGv3www9av369atasqWPHjmnIkCHGkmwHu5sUkvTpp5+qX79+cnd318mTJxURESGr1ap169bp9OnTcnFxUZcuXfTNN984Kl4AAAAAAAAAADKsSpUqWrJkierUqWPbdufOHW3evFlffvmlOnfurCeffFJfffWVIiMjk9x3+/btcnFx0WuvvaYaNWok2VejRg117dpVknTixIkUz12oUCF98sknKlCggCTJ09NTvXv3liQlJCSob9++atu2rW18QECAOnbsKEk6fPhwiscsVaqUxo8fb5uWymKxqHPnzurTp48kafz48enmZPr06bp586aaNm2q0aNHJ1lbukyZMvr222+VP39+7d69W5s3b073ePawe7onSXJ1ddXQoUP10ksvacuWLTpx4oTu3Lkjb29vBQUFqVGjRipVqpSjYgUAAAAAAAAAwG4PP/yw5s+fr6NHj2rjxo3atm2bDh06pNjYWEnS9evXNWnSJP3444+aO3euSpQoIUlasGCBYmNjZbFYUjyut7e3pPvTQqWkXr168vHxSbItICDA9nOjRo2S3adYsWKS7jdSUtK5c2fly5cv2fYuXbpo8uTJOnv2rM6cOaNy5cqleH9J2rhxoyTpueeeS3F/0aJF1aBBA61bt06bNm1KMc7MsrtJ8dlnnykoKEht27ZVkSJF1L59e0fGBQAAAAAAAABAlqhcubIqV66sQYMGKTIyUnv37tXWrVv1/fff6/r16zp//rwGDx6sRYsW2e7j7u6uW7duaf/+/QoJCdGFCxcUEhKio0eP6tq1a5KU6nRRic2OB7m7u9t+9vPzS7b/wcW+U/LPKzoSlSpVSgUKFFBERIRCQkJSbVLcvXtXoaGhkqRvv/1Wc+bMSXFc4pgzZ86kGY+97G5SrFy5UjExMXr22WcdGQ8AAAAAAAAAANnG29tbDRo0UIMGDTR48GC9/fbb+uGHH7R//34dPnxYVatW1Z07d/TRRx9p9erVtqsupPuNhqpVq6py5cr67bff0jxHWlK7QiMtBQsWTHWfj4+PIiIidPv27VTHPHiFRmrTVD0oIiIiYwEaZHeT4s6dO3r44YfTTS4AAAAAAAAAAGYaOXKkfv/9d7Vv316vvvpqquO8vLw0atQorV+/XrGxsTp79qyqVq2qgQMHaufOnfLy8tKLL76omjVrqkKFCipbtqzc3d21ePHiNJsUWeGf62Y8KLEBkbheRUoe/Gx/9erVCg4OdlxwGWD3wtlVq1bV2bNnbZexAAAAAAAAAADgjKKjo3Xu3DnbGgxpyZ8/v22tBz8/P+3fv187d+6UJE2ePFnDhw9X69at9fDDD9umbLp8+XLWBZ+K1K5+OH/+vO7evSvp/hocqfH19VXRokUlSadOnUp13PHjx3X06FHdunUrE9Gmzu4mxYcffqj8+fOre/fuWrFihc6dO6d79+4pISEh1X8AAAAAAAAAAGS3xIWhDx06pOXLl6c5duvWrbp586YKFSqkmjVr6uLFi7Z91apVSzY+MjJSP/zwgyQpPj7egVGnbfny5Sl+7r5gwQJJUq1atVSyZMk0j9G4cWNJ0nfffZfisSIiItSzZ0+1a9dOs2fPznzQKbC7SfHOO+/I29tb586d09tvv61WrVqpTp06qlq1aor/UvrlAQAAAAAAAACQ1Ro0aKCWLVtKkt5991199NFHSZoP0v2rLZYtW6YhQ4ZIkoYMGaJ8+fIlWXh6woQJSdakOHXqlPr166eQkBBJaU/B5GiHDh3Se++9ZztnQkKCvvvuO82aNUuS9MYbb6R7jP79+8vHx0d79uzR//3f/yk8PNy2LzQ0VP3799fNmzdVoEABde/ePUseh91rUuzfv9/2s9VqdUQsAAAAAAAAAABkiS+++EI+Pj5auXKl5syZozlz5qhUqVIqUqSIoqOjFRISopiYGLm7u2vo0KHq2rWrJKlKlSpq3bq11q5dqxkzZmj58uUKDAzUzZs3bY2OBg0aaNu2bbp7967u3Lmj/PnzZ/njCQ4O1tKlS7V27VqVK1dOly9fVlhYmFxcXDRixAg9/vjj6R6jbNmy+vrrr/XGG29ozZo1WrdunR5++GHFxsYqJCREcXFx8vHx0ZQpU9Jc3yIz7G5SzJkzx5FxAAAAAAAAAACQZTw8PPTJJ5+oe/fu+vHHH7Vz505duXJFx44dk7e3t4KCgvTkk0+qY8eOSa6ekKQvv/xS9evX1+LFi3X+/HkdP35chQsXVpMmTdSlSxc1btxYTZo00aVLl/TLL7/YppfKSj179pSPj49mzJihEydOyNfXVy1btlSfPn1Us2ZNw8dp1KiRfvjhB82aNUu//fabzp49q/j4eAUEBKhBgwZ6+eWXVbp06Sx7HHY3KerWrevIOAAAAAAAAAAAyHLVq1dX9erVM3QfV1dXde7cWZ07d051zKZNm5Jtmzt3bqrjAwMDdfz48VT3d+jQQR06dEgzrjZt2qhNmzZpjkmU1rlKliypESNGaMSIEYaO5Uh2r0kBAAAAAAAAAACQGXZfSbFy5coM36ddu3b2ni6Z119/XevWrdOYMWNS7CZt375dU6dO1bFjxxQVFaVy5cqpS5cu6tixoywWi8PiAAAAAAAAAAAA9rG7STF8+HDDH/ZbrVZZLBaHNSmWLFmidevWpbp/3rx5GjVqlNzd3VWvXj25u7vr999/17vvvqvdu3fr008/dUgcAAAAAAAAAADAfnY3KUqVKpXqvsjISEVERCguLk4Wi0XNmjWTj4+PvadK4uzZs/r4449T3X/mzBl9+OGH8vX11dy5c1WpUiVJ0qVLl9SrVy+tXLlSjRo10jPPPOOQeAAAAAAAAAAAgH3sblL88ssvae6Pjo7Wzz//rNGjRyssLEzz5s2z91Q2MTExGjp0qFxcXFSlShUdOXIk2ZipU6cqISFBffr0sTUopPtNlZEjR6pv376aMWMGTQoAAAAAAAAAQI6T3mfzOU2WLZzt6empZ555Rp9//rkOHDig6dOnZ/qYX331lQ4fPqyRI0eqZMmSKY759ddfJUlPP/10sn3169eXr6+vDh48qGvXrmU6HgAAAAAAAAAAYL8sa1IkevLJJ1WqVCmtXr06U8fZvn27Zs6cqTZt2qht27Ypjrl27ZrCw8Pl6empoKCgZPtdXV1Vrlw5SdLx48czFQ8AAAAAAAAAAMgcu6d7yohChQrp9OnTdt8/PDxcw4YNU4kSJfTBBx+kOu7KlSuSJH9//1QX9fb395ckhYWF2R1PSqxWq+Lj45Ntd3V1deh5coKU8pAWcmQMeTImr+WJHBlDnoxJLU/ZnYuUaiq/D2PIkzF5LU/kyBjyZAzv9dOXVo6oqebg7zt95MgY8mQMtSJ9PJeMcZb/oyLrZXmT4urVqzp16pTy5ctn9zHefvttXb9+XbNnz5avr2+q4yIjIyVJ3t7eqY7x9PSUJN29e9fueFI79/79+5Nsc3Fx0SOPPOLQ8+QEBw4cUEJCgqGx5MgY8mRMXswTOTKGPBmTWp7q1KmTrXH8s6by+zCGPBmTF/NEjowhT8bwXj99aeWImmoO/r7TR46MIU/GUCvSx3PJGGf5Pyqynt1NigsXLqS6z2q1KiYmRmfOnNG4ceMUGxurRx991K7zzJs3T5s2bVK/fv1Ut27dNMe6uBifvcpqtdoVDwAAAAAAAAAAcAy7mxQpLUydEqvVKjc3N/Xr1y/D5zh58qQ+/fRTVa1aVYMHD053fOLVGlFRUamOiY6OliT5+PhkOJ60eHt7q2LFig49Zk5Vo0YNs0NweuTIGPKUPnJkDHkyxlnyRE29z1l+H86OPKWPHBlDnowhT+lzphxRU+9zpt+JsyJHxpAnY8hT+siRMeQp77C7SWHkSgSLxaKqVatqyJAhdj2pvvjiC0VHR8vLy0sjRoxIsu/w4cOSpMWLF2v79u167LHH1LJlS0n3F9BOzdWrVyVJxYoVy3A8abFYLMyH9v+Rh/SRI2PIU/rIkTHkyRhnyRM19T5yYAx5Sh85MoY8GUOe0udMOaKm3kcO0keOjCFPxpCn9JEjY8hT3mF3k+Lnn39O+8BubipUqJBtDQh73Lt3T5K0Z88e7dmzJ8Ux+/bt0759++Tm5qYXXnhBxYsX15UrV3ThwgWVLl06ydj4+HidOXNGkhQcHGx3XAAAAAAAAAAAIPPsblIEBAQ4Mo4UzZ07N9V9AwcO1M8//6wxY8aoQ4cOtu2NGzfWokWLtH79evXp0yfJfbZt26aIiAhVrVrV4VdSAAAAAAAAAACAjDG+0vQ/9OzZUx999JGhsYMGDTK8hkVmdevWTW5ubpo4caIOHDhg237p0iWNHj1akjRgwIBsiQUAAAAAAAAAAKTO7ibFrl27dOTIEUNjT506pcuXL9t7qgypVKmS3njjDUVERKhr167q3bu3BgwYoDZt2uj8+fPq0qVLtjVMAAAAAAAAAADICUJCQlSrVi3DFyc4iqHpnk6fPq3Jkycn2x4SEqJhw4alej+r1apLly7p7Nmz8vf3tz/KDOrbt6+CgoI0a9Ys/fnnn7JYLCpfvry6d++utm3bZlscAAAAAAAAAADnsr9FSyVERpodhiEu3t6qtWFdlp/n2rVrGjhwoCJNyIuhJkX58uUVEhKSZPoki8Wi69eva9WqVYZO1K5dO7sCTM23336b5v5mzZqpWbNmDj0nAAAAAAAAACBnS4iMVEJUlNlhOI2jR49q8ODBOnfunCnnN7xw9nvvvaf58+fbbq9YsUJFixbVU089lep9LBaLfHx8VKVKFYc3KQAAAAAAAAAAgH1u3bqlKVOmaM6cOYqJiVFgYKAuXryY7XEYblJUr15dY8aMsd1esWKFypYtm2QbAAAAAAAAAABwfnPmzNG0adNUokQJvf/++zp8+LDGjx+f7XEYblL805w5c1SgQAFHxgIAAAAAAAAAALJBiRIl9NZbb6lbt27y8vLS4cOHTYnD7iZF3bp1MzQ+KipKXl5e9p4OAAAAAAAAAAA4SKdOncwOQVImmhSSZLVatWXLFp04cUJRUVFKSEhIsj8+Pl6RkZG6cuWKdu7cqZ07d2YqWAAAAAAAAAAAkHvY3aSIjo5W3759tXv37nTHWq1WWSwWe08FAAAAAAAAAAByIRd77zh//nz98ccfslqtCgwMVNWqVWW1WhUQEKBatWqpZMmSslqtkqRHHnlEs2bNclTMAAAAAAAAAAAgF7C7SbFu3TpZLBa9+eab2rBhg+bPny9PT09VqVJFCxYs0C+//KLp06fL19dXJ06cUGBgoCPjBgAAAAAAAAAAOZzdTYqzZ8+qQIEC6t27tyTJw8NDFStWTDL9U4MGDfTee+/p7t27mj17duajBQAAAAAAAAAAuYbdTYq7d+8qMDBQrq6utm0PP/ywbty4oatXr9q2tW7dWgULFtT27dszFykAAAAAAAAAAMhV7G5S5MuXT7GxsUm2lS5dWpJ0+vRp2zZXV1cFBgbq0qVL9p4KAAAAAAAAAADkQm723rFMmTI6efKkIiIiVKBAAds2q9Wq48eP64knnrCNvXPnjhISEjIfLQAAAAAAAAAAmeDi7W12CIblpFjtZXeTon79+jp48KDeeecdjR49WgULFlSVKlUkScuWLVPXrl3l6empPXv26Ny5cwoKCnJY0AAAAAAAAAAA2KPWhnVmh4AH2N2kePHFF7VgwQJt2LBBW7Zs0a5duxQUFKTKlSvr2LFj6tChg8qXL6+tW7fKYrEkubICAAAAAAAAAAA4j0GDBmnQoEHZfl6716Tw9/fXlClTFBgYKE9PT3l4eEiSPvjgA3l6eur06dPasGGD7t27p8KFC2vgwIEOCxoAAAAAAAAAAOR8dl9JIUm1atXSunXrdOzYMdu2mjVratmyZZozZ44uXryocuXK6eWXX1bRokUzHSwAAAAAAAAAAMg97G5SzJ49WxUqVFD9+vVta1EkKl++vP773/9mOjgAAAAAAAAAAJB72d2kmDZtmiIiIrR582YVLFjQkTEBAAAAAAAAAIA8wO41KW7evKly5crRoAAAAAAAAAAAAHaxu0lRrlw5Xbx4UXfv3nVkPAAAAAAAAAAAII+wu0nx/vvvKzY2Vn379tWuXbsUExPjyLgAAAAAAAAAAEAuZ/eaFPPmzVPZsmW1f/9+9erVSy4uLipQoIC8vLxSHG+xWLRp0ya7AwUAAAAAAAAAALmL3U2KH374Icnt+Ph43bx5M9XxFovF3lMBAAAAAAAAAIBcyO4mxZgxYxwZBwAAAAAAAAAAyGPsblK0b9/ekXEAAAAAAAAAAIA8xu6FswEAAAAAAAAAADIj002KmJgYLVy4UK+88opatGihxx9/XJIUHh6uESNG6NSpU5kOEgAAAAAAAAAA5D52T/ckSWfPntWrr76qc+fOyWq1Svp7gexLly5pxYoV+vHHH/Xll1+qefPmmY8WAAAAAAAAAADkGnZfSREREaE+ffooJCREJUuWVO/evVWmTBnb/gIFCqhcuXKKjo7WkCFDdOLECYcEDAAAAAAAAAAAMu/7779Xjx499Nhjj6latWpq1KiRhg8frjNnzmRbDHZfSTFr1ixdunRJjRs31jfffCNPT0/9+eefunDhgiSpbNmyWr16tQYPHqyNGzdq5syZGjNmjMMCBwAAAAAAAAAgo174ZKWiYuLMDsMQLw83LRrezuHHtVqtevPNN7VmzRq5u7urWrVq8vPz07Fjx7RixQr99NNPmjhxop544gmHn/uf7G5SrF+/Xm5ubvroo4/k6emZ4hhXV1eNGjVKW7Zs0c6dO+0OEgAAAAAAAAAAR4iKiVN0bLzZYZhq1apVWrNmjYoVK6bp06crODhYkhQfH6+xY8dq0qRJevPNN7Vhwwb5+PhkaSx2T/d08eJFVahQQUWKFElznJ+fn4KCghQWFmbvqQAAAAAAAAAAgIMsXbpUkjR06FBbg0K6f+HBkCFDVKFCBV27dk3bt2/P8ljsblJYLBZFRUUZGpuQkCAPDw97TwUAAAAAAAAAABzE19dX5cuXV506dZLts1gsCgoKkiRdvXo1y2Oxe7qnsmXL6uTJkwoLC5O/v3+q4/766y+dPn1alSpVsvdUAAAAAAAAAADAQSZMmJDqvvj4eB0+fFiSVLJkySyPxe4rKZo3b664uDiNGjVKVqs1xTExMTF65513ZLVa1bRpU7uDBAAAAAAAAAAAWW/+/PkKDQ1V4cKF9fjjj2f5+ey+kqJXr15atmyZNm7cqE6dOumZZ57R9evXJUmbN2/WyZMntWTJEp07d07+/v7q0aOHw4IGAAAAAAAAAACOtWPHDn322WeS7q9X4e3tneXntLtJkT9/fk2dOlWvvvqqDh06ZLv8Q5IGDBggSbJarfL399fEiRNVsGDBzEcLAAAAAAAAAAAcbtOmTRoyZIhiYmLUrVs3derUKVvOa3eTQpLKly+v77//XosXL9bGjRt18uRJ3blzR97e3goKClKTJk3UvXt3+fr6OipeAAAAAAAAAADgQHPnztWYMWMUHx+vHj166J133sm2c2eqSSFJ3t7e6tWrl3r16uWIeAAAAAAAAAAAQDZIXHd60aJFslgsGjp0qPr375+tMWS6SfGge/fuKSIiQoULF5aHh4cjDw0AAAAAAAAAABwkKipK//73v7V161Z5eXnp008/VatWrbI9jkw3KUJDQzV16lT9/PPPunbtmm17mTJl1KpVK/Xu3VuFChXK7GkAAAAAAAAAAIADxMfH2xoUfn5+mjx5smrUqGFKLC6ZufOPP/6oNm3aaNGiRQoLC5PVarX9O3funKZMmaI2bdpo9+7djooXAAAAAAAAAABkwsSJE7V161b5+Phozpw5pjUopExcSXH06FG99dZbio2N1SOPPKIXXnhBlSpVko+PjyIiInT06FEtXLhQhw4d0qBBg7Ry5UoVL17ckbEDAAAAAAAAAIAMuHXrlqZPny5JKlasmCZPnpzq2LZt2+qpp57K0njsblJMnTpVsbGx6tKliz744INk+6tWrarnn39eb7/9tlasWKEZM2ZoxIgRmYkVAAAAAAAAAIBM8fJw6FLNWSorYt21a5fu3bsnSQoJCVFISEiqY6tVq+a8TYq9e/fK19dXb7/9dqpjLBaL3nvvPa1bt06bNm2iSQEAAAAAAAAAMNWi4e3MDsFULVq00PHjx80Ow8buNSlu3LihsmXLysPDI81xPj4+Kl++vK5cuWLvqQAAAAAAAAAAQC5kd5MiICBAFy5cUFxcXLpjL1++rBIlSth7KgAAAAAAAAAAkAvZ3aTo3Lmzbt68qa+//jrNcQsXLlRYWJjat29v76kAAAAAAAAAAEAuZPeaFC+99JKOHTum6dOn68KFC3rppZdUvXp1ubndP+Tp06e1dOlSzZ07V8HBwWrRooUuXLiQ7DilS5e2P3oAAAAAAAAAAJBj2d2kqFu3ru3n9evXa/369bJYLPL29lZ0dLTi4+Nt+0+ePKlnn3022TEsFouOHDlibwgAAAAAAAAAACAHs7tJcfv27WTbrFar7t69a/gYVqvV3tMDAAAAAAAAAIAczu4mxc8//+zIOAAAAAAAAAAAQB5jd5MiICDAkXEAAAAAAAAAAIA8xsXsAAAAAAAAAAAAQN5k95UUkhQdHa21a9fqyJEjunPnTpprTFgsFn388ceZOR0AAAAAAAAAAMhF7G5SXL16VT169ND58+clpb4ItsVikdVqpUkBAAAAAAAAAACSsLtJ8eWXX+rcuXNydXVVnTp1VKxYMbm7uzsyNgAAAAAAAAAAkIvZ3aTYunWrLBaLpk2bpieeeMKRMQEAAAAAAAAAgDzA7oWzb9++rYcffpgGBQAAAAAAAAAAsIvdTYqSJUsqKirKkbEAAAAAAAAAAIA8xO4mRevWrRUaGqrDhw87Mh4AAAAAAAAAAJBH2N2kGDBggMqVK6chQ4bojz/+cGRMAAAAAAAAAAAgD7B74Wxvb2+999576t27t3r27CkvLy8VLlxYFoslxfEWi0UbN260O1AAAAAAAAAAAJC72N2k2L9/v/r37y+r1Sqr1arIyEhFRkamOj615gUAAAAAAAAAAMib7G5SjBs3TtHR0SpWrJjat2+vgIAAubu7OzI2AAAAAAAAAACQi9ndpDh48KC8vb21ZMkSFS9e3JExAQAAAAAAAACAPMDuhbPj4uIUFBREgwIAAAAAAAAAANjF7iZFcHCwrly5ooSEBEfGAwAAAAAAAAAA8gi7mxQ9evTQ9evXNXPmTEfGAwAAAAAAAAAA8gi716Ro3bq19u3bpy+++EK7du1Sw4YNVbJkSXl7e6d6nyeeeMLe0wEAAAAAAAAAgFzG7iZF1apVbT9v2bJFW7ZsSXO8xWLRkSNH7D0dAAAAAAAAAADIZexuUlit1iwdDwAAAAAAAAAAcje7mxTHjh1zZBwAAAAAAAAAACCPsXvhbAAAAAAAAAAAgMxwWJMiPDxcu3fv1qZNmyRJCQkJunv3rqMODwAAAAAAAAAAchm7p3tKtGPHDn399dc6cOCApL8XyA4NDVX79u3VvXt3DRkyRBaLJdPBAgAAAAAAAACA3CNTV1LMmzdPffr00Z9//imr1Wr7J0mXL1/WnTt3NGXKFP3nP/9xSLAAAAAAAAAAACD3sLtJceTIEX388cdycXFR3759tXr1atWqVcu2v3r16ho8eLBcXV31008/adWqVY6IFwAAAAAAAAAA5BJ2T/c0ffp0JSQk6N1331X37t0lSS4uf/c8vLy89Oqrr6po0aJ67733tHz5cj333HN2B/r9999r6dKlOnbsmCIjI1WkSBE98cQT6t+/v8qVK5ds/I8//qg5c+bozJkzio+PV6VKldSzZ0+1bNnS7hgAAAAAAAAAAIDj2H0lxR9//KGCBQuqW7duaY7r2LGj/Pz8dPToUbvOY7VaNXToUA0bNkz79u1T+fLl1bBhQ7m6umrFihXq0KGDduzYkeQ+n332md544w0dP35ctWvXVs2aNfXnn3/q9ddf1zfffGNXHAAAAAAAAAAAwLHsvpIiPDxclStXTndBbIvFooCAALubFKtWrdKaNWtUrFgxTZ8+XcHBwZKk+Ph4jR07VpMmTdKbb76pDRs2yMfHR9u3b9f06dMVEBCg7777TqVKlZIkHTt2TC+99JK+/fZbNW7cWDVr1rQrHgAAAAAAAAAA4Bh2X0nh6+urv/76y9DYK1euyNfX167zLF26VJI0dOhQW4NCklxdXTVkyBBVqFBB165d0/bt2yVJkyZNkiS98cYbtgaFJFWqVElDhgyRJM2YMcOuWAAAAAAAAAAAgOPY3aSoVq2arl+/bmsOpGbTpk26evWqqlWrZtd5fH19Vb58edWpUyfZPovFoqCgIEnS1atXdefOHe3evVvu7u5q2rRpsvFPP/20LBaLtmzZooSEBLviAQAAAAAAAAAAjmF3k6Jz586yWq169913dezYsRTH7NixQyNGjJDFYlGHDh3sOs+ECRP0448/qnTp0sn2xcfH6/Dhw5KkkiVL6vTp04qPj1dAQIDy5cuXbLyfn5+KFi2qe/fu6fz583bFAwAAAAAAAAAAHMPuNSmaN2+uZ599VmvWrFH79u318MMP6/Lly5KkwYMH69SpUzpz5oysVquaNGmiVq1aOSzoRPPnz1doaKgKFy6sxx9/XL/99pskqXjx4qnex9/fX2FhYQoLC9NDDz3ksFisVqvi4+OTbXd1dXXYOXKKlPKQFnJkDHkyJq/liRwZQ56MSS1P2Z2LlGoqvw9jyJMxeS1P5MgY8mQM7/XTl1aOqKnm4O87feTIGPJkDLUifTyXjHGW/6Mi6xlqUvTs2VMVK1bUO++8k2T7p59+qpIlS2r27Nk6efKkbfu6desk3X/CdOrUSW+//bYDQ75vx44d+uyzzyTdX6/C29tb9+7dkyR5e3unej9PT09Jso11lMjISO3fvz/JNhcXFz3yyCMOPU9OcODAAcPTaZEjY8iTMXkxT+TIGPJkTGp5SmnKxaz0z5rK78MY8mRMXswTOTKGPBnDe/30pZUjaqo5+PtOHzkyhjwZQ61IH88lY5zl/6jIeoaaFLt27Ur1KoGhQ4fqpZde0pYtW3TixAnduXNH3t7eCgoKUqNGjZIsXu0omzZt0pAhQxQTE6Nu3bqpU6dOtniMYk0KAAAAAAAAAADMZfd0Tw8qUqSI2rdv74hDpWvu3LkaM2aM4uPj1aNHjyRXdySuQxEVFZXq/aOjoyVJPj4+Do3L29tbFStWdOgxc6oaNWqYHYLTI0fGkKf0kSNjyJMxzpInaup9zvL7cHbkKX3kyBjyZAx5Sp8z5Yiaep8z/U6cFTkyhjwZQ57SR46MIU95h0OaFNkhLi5Oo0aN0qJFi2SxWDR06FD1798/yZjEtSjCwsJSPc7Vq1clScWKFXNofBaLhfnQ/j/ykD5yZAx5Sh85MoY8GeMseaKm3kcOjCFP6SNHxpAnY8hT+pwpR9TU+8hB+siRMeTJGPKUPnJkDHnKO3JEkyIqKkr//ve/tXXrVnl5eenTTz9NcSHuhx9+WG5ubrpw4YKio6Nt608kCg8P1/Xr1+Xt7a0yZcpkV/gAAAAAAAAAACAFLmYHkJ74+Hhbg8LPz09z585NsUEh3V8U+/HHH1dMTIw2bdqUbP+6detktVrVsGFDOnEAAAAAAAAAAJjM8JUUhw4dUrNmzew+kcVi0caNGzN8v4kTJ2rr1q3y8fHRnDlzVKFChTTH9+zZU1u3btUnn3yiypUrq2zZspKkY8eO6ZtvvpGkZNNEAQAAAAAAAACA7Ge4SRETE6PQ0FC7T2SxWDJ8n1u3bmn69OmS7q8hMXny5FTHtm3bVk899ZQaNWqkbt26af78+frXv/6lxx9/XPHx8dq5c6diY2M1dOhQVatWze7HAQAAAAAAAAAAHMNwk6JkyZLq0KFDVsaSzK5du3Tv3j1JUkhIiEJCQlIdW61aNT311FOSpJEjR6patWpasGCBdu3aJU9PT9WqVUu9e/fO1NUgAAAAAAAAAADAcTLUpHjttdeyMpZkWrRooePHj2f4fhaLRc8//7yef/75LIgKAAAAAAAAAAA4gtMvnA0AAAAAAAAAAHInmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABTGFo4e8yYMSpSpEhWxwIAAAAAAAAAAPIQQ02K9u3bZ3UcAAAAAAAAAAAgj2G6JwAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMIWb2QFklbNnz2rChAnas2ePrl+/rhIlSqh169bq37+/8uXLZ3Z4AAAAAAAAAADkebnySooDBw6oQ4cOWr16tfz9/dW4cWPdu3dPkyZNUpcuXRQREWF2iAAAAAAAAAAA5Hm5rkkRGxurIUOG6N69e/rkk0+0ePFijR07Vhs3blTTpk114sQJffnll2aHCQAAAAAAAABAnpfrmhQ//PCDQkND1aBBA7Vv39623cvLSx9//LF8fHy0dOlS3b5928QoAQAAAAAAAABArmtSbNq0SZL09NNPJ9tXuHBh1atXT7Gxsdq6dWt2hwYAAAAAAAAAAB6Q65oUJ06ckCRVrFgxxf0VKlSQJB0/fjzbYgIAAAAAAAAAAMm5mR2Ao125ckWSVLx48RT3+/v7S5KuXr3q0PNarVbFx8cn2+7q6ipJcvH2duj5UuPi7WX72csj+369D54rpTykJbtzdP9c2Z+nzORI4rlkVF7IU07L0f1zkaf0OPPfXGIusktKNZXnrTE8b43JC3nKaTm6fy7ylJ6c+DfHcympvFhTc+LzVsobecppObp/LvKUnpz4N8dzyRieS3/L7nqKrGexWq1Ws4NwpMqVKyshIUE7duyQn59fsv2LFy/We++9p1atWumbb77J9Pn279+f5guLj49Pps+R09y7dy9D48mRMeTJmLyWJ3JkDHkyJrU8+fj4yMvLS0FBQVl6/rRqKr8PY8iTMXktT+TIGPJkDO/105dWjqip5uDvO33kyBjyZAy1In08l4wx+/+oyD657koKV1dXJSQkpDvOUb2Z9M5lz4tOXkOOjCFPxpCn9JEjY8jT37IrF2nVVH4fxpAnY8hT+siRMeQpfeQoKWpqzkGe0keOjCFP6SNHxpCnv5GL3CfXNSny5cunmzdvKjo6OsX9UVFRkhzXfXR3d1dsbKxcXFzk6enpkGMCAOBsvLy80h+USdRUAEBeQE0FACDzsqOeIvvkuiZFsWLFdPPmTYWFhalkyZLJ9ieuRVGsWDGHnK969eoOOQ4AAHkdNRUAAMegpgIAgJzExewAHK1ixYqSpJMnT6a4/9SpU0nGAQAAAAAAAAAAc+S6JkXjxo0lSevXr0+278aNG9q5c6c8PT31xBNPZHNkAAAAAAAAAADgQbmuSdG8eXMFBATo119/1cKFC23bo6Ki9M477+jevXvq3Lmz/Pz8TIwSAAAAAAAAAABYrFar1ewgHO2PP/5Q3759FRUVpapVqyowMFD79u3T1atXVa1aNc2ZM0f58uUzO0wAAAAAAAAAAPK0XNmkkKQTJ05o/Pjx2rVrl+7du6fAwEC1bt1avXv3Vv78+c0ODwAAAAAAAACAPC/XNikAAAAAAAAAAIBzy3VrUgAAAAAAAAAAgJyBJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABM4WZ2AHCcs2fPasKECdqzZ4+uX7+uEiVKqHXr1urfv7/y5ctndnhOIzw8XFOmTNGmTZt06dIleXl5qUaNGurfv7/q1atndnimatq0qUJDQ9MdV7duXc2dOzcbInJuGzZs0Jw5c3TkyBFFR0erRIkSatSokV599VUVLVrU7PCcwtq1azV//nwdOXJEVqtVDz30kJ5//nl16tRJHh4eZodnqpCQELVr106dOnXSO++8k+KY7du3a+rUqTp27JiioqJUrlw5denSRR07dpTFYsnmiPMO6qlx1NTUUVMzhpqaPmpq6qipzouaahw1NWXU04yjpqaNepo66inMZLFarVazg0DmHThwQL169dK9e/dUs2ZNlShRQnv37lVYWJiCg4M1f/58FShQwOwwTXf69Gn16tVLYWFhCggIUJUqVXTx4kUdPXpUFotF48ePV/Pmzc0O0zQff/yxwsPDU9yXkJCgn376SfHx8Xr55Zf11ltvZXN0zmXs2LGaMGGCLBaLateurUKFCunAgQMKCwtT0aJFNX/+fJUtW9bsME31/vvva+HChZKkihUrKiAgQMeOHdOlS5f06KOP6ttvv1XBggVNjtIc165dU8+ePXX69Gn17NkzxTeA8+bN06hRo+Tu7q569erJ3d1dv//+uyIjI9WuXTt9+umnJkSe+1FPjaOmpo2aahw1NX3U1NRRU50XNdU4amrqqKcZQ01NG/U0ddRTmM6KHC8mJsbapEkTa3BwsHX58uW27ZGRkdYBAwZYg4ODre+//755ATqJ2NhY67/+9S9rcHCw9eOPP7bGxcXZ9i1ZssQaHBxsrVOnjjU6OtrEKJ3X//73P2twcLC1V69eSXKXF504ccJasWJFa61atax79uyxbY+KirIOGjTIGhwcbO3Xr5+JEZpv5cqV1uDgYGu1atWs69evt22PiYmxjh492hocHGx98803TYzQPEeOHLG2aNHCGhwcbA0ODrZ++OGHycacPn3aWqlSJeujjz5qPXr0qG17aGiotXnz5tbg4GDrDz/8kJ1h5wnUU+OoqZlDTf0bNTV91NTUUVOdFzXVOGqq/ainSVFT00Y9TR31FM6ANSlygR9++EGhoaFq0KCB2rdvb9vu5eWljz/+WD4+Plq6dKlu375tYpTm27Bhg44fP67HHntMI0aMkKurq21fx44d9dRTT8nX11dHjhwxMUrntG3bNk2ePFl+fn768ssvk+QuL9q6dausVquaN2+u2rVr27Z7enrqjTfekCTt2rXLrPCcwoIFCyRJAwYMUIsWLWzb3d3dNXz4cJUvX16rVq3S8ePHzQox2926dUuff/65OnfurHPnzikwMDDVsVOnTlVCQoL69OmjSpUq2baXKlVKI0eOlCTNmDEjy2POa6inxlFT7UdNTYqamj5qanLUVOdHTTWOmmof6mly1NS0UU+To57CmdCkyAU2bdokSXr66aeT7StcuLDq1aun2NhYbd26NbtDcypr166VJPXt2zfF/dOmTdMvv/yiWrVqZWNUzi8mJkb//e9/ZbVa9d5776lIkSJmh2Q6F5f7L52XL19Oti/xUuRChQplZ0hOJ/GNXbNmzZLtc3Nz02OPPSZJ2rx5c7bGZaY5c+Zo2rRp8vPz08SJE9WuXbtUx/7666+SUn5dr1+/vnx9fXXw4EFdu3Yti6LNm6inxlFT7UNNTY6amj5qanLUVOdHTTWOmppx1NOUUVPTRj1NjnoKZ0KTIhc4ceKEpPvz6aWkQoUKkpSnusEpOXTokCSpVq1aunnzpubPn6+RI0dq1KhR+vHHHxUfH29yhM5p+vTpOnfunOrXr69nnnnG7HCcwpNPPikXFxft2rVLH3/8sS5duqTIyEjt2LFDb7/9tiSpX79+JkdprsS/p9TmGXZzc5MknTlzJttiMluJEiX01ltvad26dWratGmq465du6bw8HB5enoqKCgo2X5XV1eVK1dOEq/rjkY9NY6aah9qanLU1PRRU5Ojpjo/aqpx1NSMo56mjJqaNuppctRTOBM3swNA5l25ckWSVLx48RT3+/v7S5KuXr2abTE5m5iYGIWGhsrT01OHDx/W0KFDdePGDdv+efPmqWrVqpo0aZKKFStmYqTOJSIiQtOmTZMk/ec//zE5GudRvnx5jRkzRqNGjdLs2bM1e/Zs277ChQtr3LhxKX67IC8pX768jhw5ol27diW5xF+SrFar9u7dK0m6fv26GeGZolOnTobGJb6m+/v7y2KxpDgm8XU9LCzMMcFBEvXUKGqqfaipKaOmpo+amhw11flRU42hpmYc9TR11NS0UU+To57CmXAlRS4QGRkp6f78nilJ3H7v3r1si8nZ3LlzR5KUkJCg1157TZUqVdKyZcu0d+9eLVy4UNWrV9fhw4c1cOBAJSQkmByt81iwYIHu3Lmjxo0bq3r16maH41Tq1KmjJk2ayM3NTY888oiaNGmiYsWK6caNG5o6daouXLhgdoimev755yVJn332mQ4cOGDbnpCQoLFjx9rm1I2JiTElPmeW+Jru7e2d6hhPT09J0t27d7MlpryCemoMNdU+1NTUUVPTRk21HzXVPNRUY6ipGUc9TRs1NXXUU/tRT5EduJIiF3B1dTX0hsVqtWZDNM4pscjExsaqfPnymjZtmu1SvkceeUQzZ85Uq1atdPDgQf38889JFlHKq+Lj4zV37lxJ0sCBA02OxrkcOnRIL7/8sry9vbVkyRJVqVJF0v3n1//+9z/NmDFDvXr10g8//JBmEc/NunXrpp07d2r9+vV64YUXVL16dRUtWlTHjx/XlStX1KVLFy1cuND2d4i/Jc4la0Refl3PCtRTY6ipGUdNTR01NX3UVPtRU81DTTWGmpox1NO0UVPTRj21H/UU2YErKXKBfPnySZKio6NT3B8VFSVJ8vHxybaYnM2DBbh79+7Jik6BAgX03HPPSZJ27NiRrbE5q127dunq1at6+OGHVbNmTbPDcSoffvihbt26pZEjR9re+EmSu7u7hg0bpjp16ig0NFTLly83MUpzubi46JtvvtHIkSMVHByso0ePas+ePapataqWLFmievXqSZJ8fX1NjtT5JL6mJ752pyTx9T4vv65nBeqpMdTUjKOmpo6amj5qqv2oqeahphpDTc0Y6mnaqKlpo57aj3qK7EB7MBcoVqyYbt68qbCwMJUsWTLZ/sR5PvPyHJb58+eXh4eHYmJiFBgYmOKYxO3h4eHZGZrT+umnnyTJ9qYY90VFRWn//v1ydXXVk08+mWy/xWJRo0aNtGfPHtsieHmVi4uLunfvru7duyfbt2HDBklK9e8xL0ucu/natWupjuF1PWtQT42hpmYcNTVl1FTjqKn2oaaah5pqDDU1Y6inqaOmGkM9tQ/1FNmBKylygYoVK0qSTp48meL+U6dOJRmXF7m6uqpChQqS/l7w558SX2yLFCmSbXE5s82bN0uSnnnmGZMjcS4RERGyWq2yWCxydXVNcUzi9tjY2OwMzamcP39eW7duTXXRrMRvgtWoUSM7w8oRChUqpOLFiysyMjLFOWPj4+N15swZSVJwcHB2h5erUU+NoaZmHDU1ZdRUY6ip9qOmmoeaagw1NWOop6mjpqaPemo/6imyA02KXKBx48aSpPXr1yfbd+PGDe3cuVOenp564oknsjky55KYp1WrViXbZ7VatWXLFklS3bp1szMsp3T16lX99ddf8vf3V+nSpc0Ox6kUKVJEhQoVUlxcnO1N8j9t27ZNkpJcYpvXLFu2TH369NHSpUuT7Tt69Kj27dunQoUKqUGDBiZE5/zSel3ftm2bIiIiVLVqVb6l4mDUU+OoqcZRU1NHTTWGmpo51FRzUFONo6YaQz1NGzU1fdTTzKGeIqvRpMgFmjdvroCAAP36669auHChbXtUVJTeeecd3bt3T507d5afn5+JUZqvS5cu8vX11fbt2zVp0iTbYj5Wq1Vjx47VoUOHVLZsWTVp0sTkSM134MABSVL16tVNjsT5uLi4qGvXrpKkUaNG6cSJE7Z98fHxGj9+vLZv366CBQuqffv2ZoVpuubNm8tisWjWrFlJvmnx119/aejQobJarXrllVeYrzIV3bp1k5ubmyZOnGj7e5SkS5cuafTo0ZKkAQMGmBVerkU9NY6aahw1NXXUVGOoqZlDTTUHNdU4aqox1NO0UVPTRz3NHOopshprUuQCXl5e+vTT/9fenUdFVT/+H3+OgCiIS2654YKJa4pbubdYZuXWYpKfXEjNSlPLFlGr45ItGuWSJmqC+tFQMdF2Nc3lK2rgHqIsAi6oCJobiPL7g9/cQGeEAWTAz+txjufUnTv3vu+dO7zec97bZwwZMoSPPvqIoKAgatasSXh4OGfOnKFp06aMGTPG3sW0uypVqjBjxgxGjhyJn58fwcHBNGjQgMjISI4fP0758uWZPn06JUuWtHdR7S4hIQGAypUr27kkRdObb75JREQEf/zxB7169aJly5aUK1eOiIgITpw4gYuLC19//TUVKlSwd1HtplmzZgwZMgR/f3969OhBmzZtAAgNDSU1NZU+ffowaNAg+xayCGvYsCFjxozhiy++wNvbm7Zt2+Ls7ExoaChXrlyhX79+PPnkk/Yu5j1HeZp7ytTcU6bemTI1Z8rU/FGm2ocyNfeUqbmjPM2ZMvXOlKf5ozyVu02NFPeINm3asHLlSmbPns2uXbs4duwYNWvWpG/fvgwePBhXV1d7F7FI6Ny5MyEhIcybN48dO3awefNmKlWqRN++fXnttde0QNL/l5ycDEDZsmXtXJKiycnJiblz5xIcHExwcDARERGkpqZSpUoV+vbty9ChQ3F3d7d3Me3unXfeoVatWixfvpydO3fi6upK8+bN8fb2pnv37phMJnsXsUgbMmQIdevWZfHixezbtw+TyYSHhwf9+/enV69e9i7ePUt5mnvK1NxRpt6ZMjV3lKn5o0y1D2Vq7ilTc6Y8zZkyNWfK0/xRnsrdZMowjyUUEREREREREREREREpRFqTQkRERERERERERERE7EKNFCIiIiIiIiIiIiIiYhdqpBAREREREREREREREbtQI4WIiIiIiIiIiIiIiNiFGilERERERERERERERMQu1EghIiIiIiIiIiIiIiJ2oUYKERERERERERERERGxCzVSiIiIiIiIiIiIiIiIXaiRQkRERERERERERERE7EKNFHKbiIgIpkyZwjPPPEPr1q1p1qwZXbp0YciQISxdupRr167Zu4gAPPbYY3h6erJy5cpc7R8cHIynpyedO3e+yyWz3QcffICnp6fN/2bNmkVoaKjx/+np6fa+lHxJTEzkoYcewtfX19g2a9YsPD098fb2tmPJ7GPgwIF069aNK1eu2Pxe833L+i84ODjbPidPnmT8+PF07tyZpk2b0qlTJ9577z2ioqIK6hIM5u+fp6dngRwvp+f+9OnTXLp0Kds28/ds7Nix+T5/QkKCcf7jx49nO37Wfzt27Mj3uaR4U6YWPmVqJmVqdspU65SpUhwoTwuf8jST8jQ75al1ylOR/HG0dwGkaJk5cyZz587l5s2blClTBnd3d5ycnDh79ixbt25l69atLFiwgDlz5tCkSRN7F/eeUadOHVq2bHnb9sjISC5dukTFihWpXbv2ba9Xq1atMIpXaHx9fUlLS+Ptt9+2d1GKhPHjx9O7d28+/fRTJk2alKdjlClThgYNGgBQsWJFY3t0dDTe3t6kpKTg5uaGp6cnCQkJrF27ll9++YU5c+bQqVOnArmOwpSWlsbcuXNZtGgRISEhlClTptDOnfV7HBYWVmjnlaJLmWofytRMytTslKm2U6ZKUaE8tQ/laSblaXbKU9spT0VyR40UYli9ejVz5szBxcWFadOm8cQTT+Dg4GC8HhUVha+vL3v37uXVV1/lp59+4r777rNjiW3zxBNP0Lx5c5ycnOxdlNsMHz6c4cOH37b9lVdeYdeuXXTu3JlPP/3U4nuvXr3KTz/9BICjY/H9Sq9fv55t27bx1ltvUalSJXsXp0ho0KABzz33HEFBQfTu3dvij4TcHGP58uXZtqWnpzN8+HBSUlLo1asXkyZNolSpUqSlpfHZZ5+xdOlS3n77bX777TcqVKhQUJdToB588EGLz/2ZM2f45ptvLL7n7bffZujQobi5ud2VMmX9HhdUbxwpvpSp9qNMVaZaoky1TpkqRZny1H6Up8pTS5Sn1ilPRfJH0z2JYd68eQC89957PPXUU9kqfwAeHh7MnTuXihUrkpycTGBgoD2KmWdubm54eHjg7u5u76IUqNKlS+Ph4YGHh4e9i5JnaWlpzJgxAzc3NwYOHGjv4hQpw4cPx2QyMW3atAI7ZkhICMePH6d69epMmTKFUqVKAVCyZEkmTJhA69atuXjxIosXLy6wcxa0vDz3VapUwcPDgypVqtzFkolkUqYWT8rUe5sy1TJlqhRlytPiSXl6b1OeWqY8FckfNVIIABcuXCAuLg6A5s2bW93vvvvuo2vXrgDs37+/UMom976VK1dy8uRJnn322UId+lgc1KxZk06dOrF//362bNlSIMdcs2YNAD179qRkyZLZXjOZTLz00ksA/PjjjwVyPpH/NcpUsSdlqnXKVJHiRXkq9qQ8tU55KiJ3Q/EddycFKutQtD/++IPGjRtb3XfkyJEMGDAg29yBWR04cIDAwEB2797NuXPncHFxwdPTk169etGnT5/ber8AXLt2jdWrV7NhwwaOHDnCxYsXKVmyJNWrV6djx44MHjyYqlWr5upazp8/z4ABAzh69CgNGjRg8eLFVKxYkeDgYMaNG0fVqlX5888/jf3Nw1X9/f2pUqUKc+fOZffu3Vy8eJGqVavy+OOPM3z4cIvDhq9evcqKFStYu3Ytx48fx8nJiZYtW/LGG29w7Ngxxo0bR58+fawOgy0IoaGhDBgwAIBDhw4Zn+UHH3zAmjVrmDJlCq1bt2b27Nns3LmTf/75h5o1a/Liiy8yaNAgTCYTv/32GwEBAfz999/cvHmThg0b8vrrr9OlSxeL59y9ezdLliwhLCyMlJQUypYtS4sWLXjllVdo166dzdewdOlSAHr16nXH/c6fP8/8+fPZuHEjp06doly5crRq1YqhQ4fSrFkzi++JiYlh8eLF7Nixg1OnTuHs7IyHhwdPP/00/fr1M3pomJnvW48ePZg+ffptxzM/RzVq1GDTpk3GdvNzNH/+fA4ePMiyZcu4fPkytWrV4uuvv8bDw4PExET8/f3ZunUrJ06cwMnJiWrVqtG+fXsGDRpEzZo1LV5D79692bJlC0uWLLH6meTWzZs3jR9vrVq1sriPechufHw8p06dMuaVtWV46K33x5qEhAQef/xxKlWqxLZt21i1ahVBQUEcO3YMyBwK3LdvX5577jlMJpPxPkvPvfkzMHvyyScBCAwM5KGHHrrjZ3vmzBmWLVvG9u3biYuL4/Lly7i6ulKvXj2efPJJXn755dueFRFrlKnKVGUq2e6bMlWZqkyVvFCeKk+Vp2S7b8pT5anyVO5laqQQAFxdXWnZsiVhYWHMmjWL+Ph4nn/+eVq2bHlbha1y5cpUrlzZ4nH8/f358ssvjUXNPD09SU5OZteuXezatYu1a9fyzTffZJtv7/z58wwcOJDIyEhMJhPu7u5Uq1aNxMREjh49ytGjRwkJCSE4OJj777//jteRnJzMoEGDOHr0KI0bN2bRokW5nq/wzz//ZMWKFWRkZFCnTh1cXV2Ji4sjICCAzZs3ExwcnK0HRXJyMsOGDWP//v2YTCY8PDwoUaIEmzdvZuvWrXTu3DlX573bwsLCmDp1Kunp6Xh4eGAymYiKiuLTTz/l/PnzmEwmvv32W8qWLUudOnWIiYkhPDyc1157jfnz5992HdOnT8ff3x+AcuXK0aBBA86cOcPGjRvZuHEjQ4cOZezYsbkuX0REBNHR0VSoUOGOPaTOnDlDnz59OH36NO7u7tStW5eYmBh+/fVXNm3ahL+//22Vz5CQEMaPH09aWhqlSpWiQYMGXL58mX379rFv3z5Wr16Nv79/js+VLebNm0dYWBju7u64ublx6dIl6tSpQ1xcHP369SMpKQkXFxfq1q0LQGxsLEuWLGHNmjUsWbLE4o+v9u3bU6JECbZv305KSgrly5fPc/kSExO5du0agNVh5dWqVcPBwYEbN24QGxtrVABtmW/U2t8IazIyMnj//fdZu3YtZcuWpW7dusTHx7N371727t1LTExMjs9VgwYNuHLlCgcPHgSgSZMmODs75zi/5969exk6dCgXL17E2dkZd3d3HB0dSUhIIDw8nPDwcDZu3EhgYKDFH7Ait1KmKlOVqQVDmZpJmSr/q5SnylPlacFQnmZSnooUbWqkEMPEiRPp378/V65cYc2aNaxZs4YyZcrQqlUrWrduzUMPPUSzZs0oUcLyLGG//vqr0fL7xhtv8PrrrxvD9Hbu3Mk777zDrl27eO+995g7d67xvs8//5zIyEhq167N/PnzqVOnjvHa1q1bGTlyJElJSQQEBPD+++9bLf+FCxfw8fHhyJEjNGvWjEWLFlG2bNlcX/+SJUt45JFHmDx5sjEf4MaNGxk5ciTHjx9n1apVDBo0yNh/ypQp7N+/n1q1ajF79mwaNmwIZC7eNmrUqFy10BeG4OBgWrVqxddff03lypW5efMm48ePJzg4mAULFhjBO2jQIEqUKEFycjI+Pj4cPnwYf3//bBXAFStW4O/vT9myZZk4cSI9e/YEMsP7559/Zvz48fj7+1O7dm1efPHFXJVvx44dALRo0cLqswWZvRlq1KjBypUrefDBB4HMXhRDhgwhNjaWL7/8kpUrVxr779u3j3HjxpGenk7fvn15//33jQr833//zejRo4mMjOSNN94gKCiowBZ0CwsLY+zYsQwdOhTI/IHj4OCAn58fSUlJdOvWjWnTpuHq6grAuXPnGDFiBOHh4cyYMYOFCxfedszy5ctTv359IiMj2blzJ0899VSey5eUlGT8t7VFBR0cHHBzcyMlJYXk5GRj+62LmxWkpKQk1q9fz/jx4+nfvz8ODg6kpqYyYcIEQkJC+O677/Dx8bnjQogTJ040er0A+Pn5Ubt27Tue98aNG7z77rtcvHiRrl278sknn1CuXDkArl+/znfffceMGTPYs2cPW7du5ZFHHimwa5Z7mzJVmapMzT9lat7LpUyVe4XyVHmqPM0/5Wney6U8FSk8WpNCDI0bN2blypXZhtddunSJLVu2MGPGDPr27UvHjh3x8/Pj6tWrt73fz88PgJdeeolRo0Zlm0fw4YcfZvbs2QBs2rSJPXv2AJl/YHfv3o3JZGLcuHHZKn8AnTp14umnnwYgMjLSatn/+ecfBg8ezOHDh/Hy8mLx4sU2Vf4AKlasyMyZM7MtWPT4448bFaCwsDBje1RUFOvXr8dkMjFnzhyj8geZi7d9++23RWbYnaOjI19++aXRa6BEiRIMGzYMyBxW2atXL3x8fIzKV4UKFYwhiocPHzaOk5aWxqxZswD45JNPjMofZM4R+fTTT/Puu+8CMGvWLNLT03NVvtDQUCCzh0FOpk+fblT+AGrVqsWIESOAzCHcqampxmszZ84kPT2djh07Mnny5Gw9jBo1asSCBQsoVaoUhw4dKtB5LWvUqMGQIUOM/zdXWCIiIoDMOTbNlT+ASpUqMX78eDp16kT9+vWtHtd8f3bu3Jmv8pl7qAA4Oztb3c/8mqXv+t3y8ssvM2DAAKMniLOzM76+vphMJtLT0+/KHMMRERGkpKRQsmRJpkyZYlT+AJycnBg2bBi1atUC7vw3SORWylRlKihT80uZmnfKVLlXKE+Vp6A8zS/lad4pT0UKjxopJJv69evz3//+lx9++IERI0bg5eWFk5OT8XpSUhLz5s2jZ8+enD592tgeGxtLTEwMAAMHDrR4bC8vL7y8vIDM3h+Q+Qd248aN7Nu3z2Lrb0ZGBi4uLkD24Mrq0qVL+Pj4cOjQIZo3b87ChQvztLBVu3btLAaih4cHkFnJNPv999+BzPkSLc2BWKNGDWPxNnvz9PS8bahojRo1jP+2NH+kuRJ86dIlY1t4eDjnzp3D1dXV6AVwq549e1KiRAkSExOzVR7vJCEhAbA+rNOscuXKFodymu9/RkYGKSkpAFy5csWoWJors7eqVauW8RmZn8eC4OXllW1eSjNzb4np06ezYcOGbM9zs2bNWLBgAePGjbN6XPPQ2/j4+HyV7049gSyxdC13y6OPPnrbtgoVKhiV6IsXLxb4OZs0acLu3bvZvXu3xWH3aWlpRqWwMCvDcm9QpipTQZmaH8rUvFOmyr1Eeao8BeVpfihP8055KlJ4NN2TWNSoUSMaNWrEyJEjuXr1KmFhYWzbto21a9eSlJREXFwco0aN4vvvvwcgOjoagNKlSxsVJkuaNm1KeHi4UVk0c3Z25ty5c+zbt4/Y2FgSEhKIjo7m77//5sKFC0BmjwpLvvrqKyNMk5KS8hxY1hY9M/c2ydrr4ujRowDZeqfcqmnTpqxfvz5PZSlI5rkas8rag8hS6FkaVmq+5uvXr9O/f3+r53NwcODmzZtER0dn61FijXloZ069irL2HsrK/AMB/v2REB8fz/Xr14HMz8Ea82d06/OYH9bmuRw1ahShoaHExMTw5ptvUrJkSby8vOjQoQNdunS547MEGHNWnj9/Pl/ly3q/UlNTrfZUMff4ydrbytvbO9fnqVy5MjNnzrSpbDl9B2/cuGHT8WxRqlQpoqOjOXz4MHFxccTHx3Ps2DGOHDli3Atrf4NEcqJM/ZcyNZMyNXeUqZmUqSKZlKf/Up5mUp7mjvI0k/JUpGhTI4XkqHTp0nTo0IEOHTowatQofH19+fHHH9m7dy+HDh2iSZMmRm+GnHqHmIcQXr582dh29uxZPv74YzZt2pTtD2zp0qVp1qwZN27c4K+//rJ6zGvXrtG2bVtiYmJISEjgiy++4KOPPrL5OrP2xsmJeQ7ErGF6q7z0lLkbSpcufcfXc9trwdxLJy0tLduwYmty26PAvF9OQ4/vNOzzVll719xpQSrzZ5T1ecwva+Vs1KgRISEhfPvtt/z++++kpKQQGhpKaGgoX375JQ0aNOCjjz6idevWFt9vftbMP4jyKmuFPyUlxWLFOz093fi8K1asaGzPzedulrUnVG7l9B3MyMiw+Zi5sW/fPj7++OPbelZVqFCBLl26cPjwYaM3lUh+KVNvp0xVplqjTM2kTBW5nfL0dspT5ak1ytNMylORok2NFALAhx9+yM6dO+nTpw+vv/661f1KlSrFpEmT+O2337h+/ToxMTE0adLEqNhlDV5LzGFv3j81NZWBAwcSFRVF+fLl8fb2pmnTpnh4eODu7m4s5nSnCmCHDh345ptv2Lx5M6NGjWL58uV069aNhx9+2NbbkGvmStWdrrcgKxVFgfmamzRpQnBwcIEd19nZmStXrmQbqpxfWefT/Oeff7JVYrIyV6ay7m9mrbKRn+GUtWrVYsqUKUyaNImDBw+ya9cu/u///o/Q0FAiIyMZMmQIP//8s8WeReay5nce2apVq+Lm5sY///zDiRMnLA5hPnXqlNEjJOscvEeOHMnXuYuiqKgoBgwYwLVr16hfvz7PP/88DRs2xMPDw+g1069fP1UAxSbKVNsoU5WpeaFMLXqUqVLQlKe2UZ4qT/NCeVr0KE/lf5XWpBAgsyJ2/PhxNmzYkOO+ZcqUMQLTPA9fvXr1gMxwjIqKsvregwcPAv/OfbhhwwaioqJwdHTk+++/Z/To0XTt2pW6desaCxNlnVfUku7du1OqVCmeeuopunbtSkZGBuPHj+fKlSs5XktemReIulMgmhehuleY55uMjY21uuBYRkYGO3fuJDY2lrS0tFwdt1KlSsC/PX8Kgru7uzEc2PzMWXLr8wgYz515KO6tzpw5Y3N5MjIySEhIYMeOHUBmz6AHH3yQIUOGsHDhQtatW0eZMmW4evUqv/32m8VjmO+PtcqsLcxDnMPDwy2+bt5eo0YNq8Nb7xUBAQFcu3aNevXqsWrVKnx8fGjfvn22605MTLRjCaU4UqbaRpmqTLWFMrXoUqZKQVOe2kZ5qjy1hfK06FKeyv8qNVIIkLmYFGQGYk49ELZt20ZKSgrly5enefPmQGblwFxBCAgIsPi+sLAw9u/fD0Dnzp2BfxekcnV1zdYabnbu3Dk2b94M5G6uvw8//BA3NzdjSO3d8sQTTwCZQWmpwpuUlGQsXHavaNOmDW5ubly+fNnqM7Ju3ToGDhxI9+7dc6y4m5mfm9zunxsuLi5GL6XAwECL+8THx7Np0ybg3+cR/h1qap7DNqsbN24Y77FFSkoK3bp1Y/DgwRw4cOC21+vWrUv16tUB63NKmu+P+cdWfnTv3h2A4OBgixX1FStWANCnT598n6uwZR0anpuhtydOnAAyFx+0NOx8+/btnDx5Eri7843KvUWZahtlqjLVFsrUwqNMFXtTntpGeao8tYXytPAoT0VyR40UAmQOR+3WrRsAEyZMYOrUqbcNHUtNTWX16tWMHj0agNGjR2cbgjhq1CgAvv/+e2bOnJktWEJDQ3nrrbcA6NSpE+3btwf+DbMLFy4QEBCQ7Q/23r17GTx4MCkpKUDuhjBWrVqV9957D4Dly5ezc+fOXN8DWzRu3JiuXbty8+ZNRowYwbFjx4zXTp48yRtvvJHjsOLixsXFhWHDhgEwdepUVq9ena2ysmHDBmOe1e7du1scomlJy5YtAes9JvJqxIgRODo6sm3bNiZOnJjt84iIiGDo0KGkpqbSsGFDevfubbzWqlUrIHMRtsDAQOOZvHDhAr6+vkRGRtpclgoVKtCpUycAfH19s/1ouHnzJsuWLSMyMpISJUoY+93KfH/M5cuPnj174u7uTnx8PGPHjjXuTVpaGlOmTOGvv/7Czc2N//znP/k+V2HLOgevueJ2J+YfINu3b2fPnj3G9vT0dNavX8+YMWOMbeZF70Ryoky1jTJVmWoLZWrhUaaKvSlPbaM8VZ7aQnlaeJSnIrmjNSnEMH36dFxcXPjhhx8IDAwkMDCQ6tWrU7FiRVJTU43hkU5OTrzzzjt4e3tne3/37t2Ji4vDz8+POXPmEBAQQN26dTl//rzREty2bVu++OILTCYTAI899hheXl6Eh4fzySef4O/vT9WqVTl79iyJiYmYTCbat2/Pjh07OHPmDBkZGcZ7rXnxxRdZt24du3btwtfXl3Xr1lmczzG/Jk+ezPHjxzl69CjPPvss9evXx8HBgaNHj+Lo6IinpydHjhwxhmbeC4YOHUp8fDxBQUH4+vryxRdfULNmTRITE40hpq1atWLq1Km5Pmbnzp3x8/PjwIEDpKWlUbJkyQIpq5eXF1OnTmXChAkEBQUREhKCh4cHV65cISYmBsgcEj179uxs5+zSpQutW7dmz549TJ06lUWLFlGhQgWio6O5fv06I0eOZNasWTaXZ9KkSbz00ktERkby7LPPUrNmTdzc3Dh58qQxTHbMmDHUr1//tveePn2aEydO4OjoSIcOHfJ4R/7l7OzMjBkz8PHx4ddff2Xr1q3Uq1ePhIQEUlJScHJyYvbs2dkWMCsuypcvT40aNThx4gRvvvkm9erVY9SoUdl6ImXl4+PD+vXrSU5Opn///tSpUwdXV1cSEhK4cOECLi4uxt+oguxJJfc+ZaptlKnKVFsoUwuHMlWKAuWpbZSnylNbKE8Lh/JUJHc0kkIMJUuW5NNPP2XlypX4+PjQpEkT0tLSiIiI4PTp09StW5dXX32VkJAQo7fCrV577TWCgoJ49tlnKVOmDBEREVy7do127drx2WefERAQkC1UHBwcCAgIYOzYsTRq1IirV68SGRmJo6MjTz/9NMuWLeObb77B2dmZlJQUwsLCcrwOk8nElClTKFWqFCdOnLhrQ2rvu+8+goKCjJCJi4vj5MmTPProowQFBdGiRQsAi8PziiuTycTkyZNZuHAhTzzxBI6Ojvz9999cvnyZFi1aMGHCBBYvXmzTNTdu3JgHHniA1NRUQkNDC7S8vXv3Zu3atfTt25dKlSpx9OhRkpOTadmyJR9++CGrVq2iVq1a2d5TokQJFi5cyOjRo3nggQdISkri5MmTtGvXjuXLl9OjR488laVKlSqsWrWKV199lfr163P27FkiIyNxdnbmmWeeYfny5Va/V3/++ScAHTt2LJD5PiFzzs+1a9fywgsvULZsWY4cOYLJZKJbt26sXLnyri7qd7d9/fXXeHl5cfPmTWJjY4mLi7O6b/Xq1QkJCcHb25s6depw6tQpYmJiqFSpEq+88gohISFGz7zQ0NC7Oo+w3FuUqbZRpipTbaFMLTzKVLE35altlKfKU1soTwuP8lQkZ6aM3EyIJiI2e+utt/j1118ZM2YMw4cPt3dxirQ1a9bwwQcf0K1bN2bOnGnv4hQ5L7zwAgcOHGDp0qW0adMmV++ZNWsWs2fPpmXLlixfvvwul1Bu5enpCcB3331nTB0gInmnTM09ZeqdKVOLH2WqSMFRnuae8vTOlKfFj/JUijqNpBDJg+3bt/P4448bc5ze6urVq+zatQvI7IUhd9ajRw/c3d3ZtGkTSUlJ9i5OkRIREcGBAwdo27Ztrit/IiLFiTK1YClTrVOmisi9THlasJSn1ilPReRuUCOFSB40atSIxMREfvnlFxYuXEh6errxWlJSEmPHjiU5OZl69erRrl07O5a0eHB0dGTEiBFcv36dwMBAexenSFmwYAEmk8nqjw0RkeJOmVqwlKnWKVNF5F6mPC1YylPrlKcicjdo4WyRPLjvvvsYO3Ys06ZN4/PPP2f+/PnUqFGDq1evEh8fz/Xr17n//vv56quvcHJysndxi4VevXrx888/s3jxYry9vbn//vvtXSS7O3DgAOvXr6d///60bt06T8eIjIw0FhAcPnw4Xbp0KcgiShbz5s1jy5Yt9i6GSLGjTC14ytTbKVOLF2WqiO2UpwVPeXo75WnxojyV4kQjKUTyaNCgQaxatYoePXpQvnx5oqOjOXfuHPXr12fkyJH88MMPxpx/kjuTJ0+mdOnS+Pn52bsoRcLnn39O7dq1GTt2bJ6PcenSJcLCwggLC9Mw5bssNjbWuNciYhtlasFTpmanTC1elKkieaM8LXjK0+yUp8WL8lSKEy2cLSIiIiIiIiIiIiIidqGRFCIiIiIiIiIiIiIiYhdqpBAREREREREREREREbtQI4WIiIiIiIiIiIiIiNiFGilERERERERERERERMQu1EghIiIiIiIiIiIiIiJ2oUYKERERERERERERERGxCzVSiIiIiIiIiIiIiIiIXaiRQkRERERERERERERE7EKNFCIiIiIiIiIiIiIiYhf/D4ZMhyjZJRuQAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABioAAAH3CAYAAAAloQddAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfGElEQVR4nOzdd3RU1fr/8c+kkgARQm8iICDFBETpShNpCoiABeHSUQTFLyKgoAgWVLzcS5HegoB0RJAmvaNU6TV0SCAQSnoyvz/yy9yEtDMhyZkk79darJUzpz3z5Ez2cJ6z97ZYrVarAAAAAAAAAAAATOBkdgAAAAAAAAAAACDnolABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApnExOwAAAAB77N27V126dHmsY9SsWVNz5841vP2QIUO0fPlySdKOHTtUqFChxzp/fPHfz8CBA9W7d+80HefmzZuaP3++duzYoUuXLik0NFRPPPGEKlWqpFatWum1116Ti4u5X/2uXLmiJk2aJHht6tSpatCggeFjDB06VMuWLbMt//vf/1arVq3SLUYpY3/fUmwe8uXLpzx58qTrcbOCoKAgrVq1Stu3b9fp06cVFBQkJycneXt765lnnlGTJk3UqlUreXh4mB2qIREREbp8+bLKlStndigpevjwoYKCglSqVKnHPtapU6fUvn17VahQQUuWLJHFYpGU8HMjST4+Plq8eLHh4z7696FMmTJau3ZtqvudO3dOv//+u/bt26cLFy7o/v37cnNzU+HCheXj46NWrVrppZdessWZnD179mjixIk6evSoLf73339ftWvXTnG/n3/+Wf/973/VrFkzjRs3LsVtp06dqp9++kkffvihPvjgg1TfGwAAQE5CjwoAAIAs7o8//lDz5s01efJkHT16VPfu3VNkZKRu3bql7du3a8iQIXrrrbd08+ZNs0NNZN26dYa3jYiI0J9//pmB0WSsiIgITZgwQa1atdLdu3fNDidThYeH69///rcaNWqkb775Rtu2bdONGzcUERGhsLAwXbt2TZs2bdLnn3+uZs2aafPmzWaHnKpdu3apdevW+uOPP8wOJUV//PGHWrRoob/++uuxjxUREaFPPvlEERER+uyzz1K8+f/PP//o+vXrho+9Zs0au2K5efOmPvzwQ7Vq1UqTJk3S/v37FRQUpMjISD18+FAXLlzQb7/9pt69e+vNN9/UuXPnkj3Wtm3b1L17d+3bt08hISEKCQnRnj171K1bN61cuTLZ/e7cuaMZM2bI2dlZAwYMSDXmrl27qmTJkvr555915MgRu94vAABAdkePCgAAkKVUrVpVK1asSHLd0aNHNWzYMElSo0aN9NFHHyW5naenZ0aFl+l2796tTz75RNHR0XJ3d9c777yjF198UXnz5tXly5e1YMEC/fXXX/rnn3/Uq1cvLVy40KGeVt+4caOioqIM9fbYuXOn7t27lwlRZYxp06Zp/PjxZoeR6W7fvq3evXvbnlT39vZWmzZtVKNGDRUuXFjR0dE6f/68/vjjD+3cuVM3b95U3759NXLkSHXo0MHk6JN2/fp1devWzewwUvX333/r448/TrfjTZs2TadPn1azZs1Uo0aNFLe1Wq1at26dunbtaujY9hQqDh8+rD59+ujOnTuSpHLlyql169aqUqWKnnjiCYWEhOj48eNasmSJzp07p8OHD+vtt9/WzJkzVbVq1QTHio6O1ogRIxQdHa0KFSpowIABcnd315QpU7Rv3z59+eWXatCggZ544olEcUyZMkUPHjxQ+/btVbZs2VTjdnNz08CBA/Xxxx/riy++0NKlS+Xs7Gz4fQMAAGRnFCoAAECWkjt3blWqVCnJdfFvYufLly/Z7ew1evRojR49Ol2OlZ6sVqtGjhxpK1L4+fmpWrVqtvU+Pj5q2bKlRowYoV9//VWnTp3SnDlz9N5775kX9P9XoEAB3b59W3fv3tXevXtVr169VPeJu5Hp5uamiIiIDIsto37fMTEx6X5MRxceHq4+ffrYihQtW7bUqFGjEg179dxzz6l9+/ZavXq1Bg8erMjISI0YMUJPP/20qlevbkboKYqOjjY7BEPSM86rV69q6tSpcnJySrYIHCfu87127VpDhYrLly/r2LFjklL/fPv7+6tXr14KDg6WxWLRJ598ou7du8vJKeFgAbVr11aXLl00ZswYzZo1S8HBwerbt69WrVolLy8v23Z//fWXrl69KmdnZ02fPl1FihSRJNWoUUONGjXSnTt3tHHjRrVr1y7B8a9fv6758+fL3d1d/fv3T/U9xmnRooWmTJmiEydOaP78+ercubPhfQEAALIzhn4CAADIog4ePKjz589Lkjp37pygSBHHYrHos88+U4ECBSQp2d4oma1+/fq2nh1Ghn+KiIjQxo0bJUkvvvhihsaG9DNx4kT9888/kqRXX31VY8aMSXFujlatWmnw4MGSpKioKH3zzTeZEidSN2HCBIWFhalx48apzsnRtGlTSdKhQ4cMDTkXN3zWM888k+KcMFarVUOHDlVwcLAkafjw4erZs2eiIkUcFxcXDRkyRK+88oqk2OGiJk2alGCbkydPSortlRFXpJAkDw8PW5Hs1KlTiY49fvx4hYeHq1OnTipatGiq7zGOxWJRr169JEmTJ09WaGio4X0BAACyMwoVAAAAWdTff/9t+7lx48bJbufu7m4bpuXChQsZ2hvBqFy5ctkm0f7zzz9T7W2wbds2PXjwQHny5NFLL72UGSHiMQUFBWn27NmSJC8vL40YMcLQMDfvvPOOnnrqKUmx8xwcPnw4A6OEEVeuXLHN1WBkOK7mzZtLii0sbNiwIdXt43pLtWzZMsXttmzZogMHDkiSatWqpU6dOqV6bEkaPHiw7dpbsmSJwsPDbetCQkIkKUEvizhxRbWHDx8meP3cuXNasWKF8uTJo969exuKIb5XXnlF+fLl061bt7Rw4UK79wcAAMiOGPoJAADkWJ07d9a+ffvUpEkT/fjjjxo9erTWr1+vsLAwFS1aVG+//ba6du2qIUOGaPny5ZKkHTt2JPnE7+XLl7V48WLt27dPly9fVnBwsNzc3OTt7S1fX1+1a9fO0PBG9vDx8VGfPn0UEBCg0qVLp7it1Wq1/RweHi43N7d0jSUtmjdvrrVr1+r27dv666+/VKtWrWS3jbuR2aRJE8OxHzx4UIsWLdLff/+tmzdvytnZWcWLF1edOnXUqVMnlSlTJsn9Uvt937x5U/PmzdOOHTt04cIFRUZGKl++fKpYsaIaN26sN954Q7ly5bJtv2zZMg0dOjTBMZo0aSJJKlGihDZt2mTovHH69OmjLVu2SEr8pHfjxo119epVdenSRX369NGoUaO0fft2Wa1WlSxZUr1799Zrr71m295qtWrNmjX6/fffdfToUd25c0e5c+dWuXLl1KRJE7311lvKnTt3inlOzooVK2w3hN99913lzZvX0H7Ozs7q27evTp48qeeffz7Zp/dv376tBQsWaOvWrfL391doaKi8vb3l4+Oj1157Ta+88kqSkz3v3btXXbp0scVYrlw5zZ8/X3/88YetkFeiRAk1bNhQ3bt3V8GCBRPsX7FixQTLEyZM0IQJEyRJfn5+ia7ju3fv6pdfftGWLVt06dIlhYaGqkCBAra/C3EFu0fFv27++usvOTk5afbs2dqwYYMuX74sq9Wq0qVLq2nTpvrXv/6VoKfKlStXbNdYnKFDh9qOt3HjRpUsWTLJ8ybl119/VVRUlAoUKGCoR9PTTz+tp59+WmfPntW6dev07rvvJrutv7+/Tpw4ISl2WKSUbtzHX/f+++8bjr9kyZLq1auX3N3d9fzzzycomMUVKB48eJBov7ieG49eu2PHjlV0dLS6d++u/PnzG44jjpubm1q0aKEFCxZowYIF+te//pXixOQAAAA5AYUKAACQ40VFRal3794Jeij4+/snOXlqUqZMmaJx48YpKioqweuRkZF6+PChLl++rFWrVuntt9/WiBEj0i3u2rVrq3bt2qluFxkZaXsKOW/evIZvGGe0hg0bysPDQ6GhoVq3bl2yhYrw8HDbzfyWLVsqKCgoxeNGREToiy++sN30j+/s2bM6e/asFixYoP79+9s9X8fu3bvVr1+/RDc1AwMDFRgYqB07dmjGjBmaMWNGsoWQzPDgwQN16tRJ/v7+ttdOnz6dYGib27dvq1+/frZrI87du3e1f/9+7d+/X7Nnz9a4cePSNE/E1q1bbT83atTIrn3btGmjNm3aJLv+jz/+0BdffKH79+8neP3mzZvasGGDNmzYoBdeeEHjxo2Tt7d3sse5ffu2Pv30U50+fTrB6+fOndO5c+e0ePFizZo1K9EEzEZt3bpVn3zySaJJ4K9fv67r169r7dq1aty4sX788ccUh8S6cOGCBgwYoGvXriV4/cSJEzpx4oQWL16sX375xa7ig1ExMTG2z1L9+vUNT/7cvHlzTZgwQX///bdu375tG37uUXHDPlWtWlVPPvlksseLiIjQ7t27JcXOVVSzZk173kayk4pXqFBBUuzvPDAw0FYgDA0NtfXmiV+cOnLkiDZs2KACBQoYnig8KQ0aNNCCBQvk7++vv//+Wy+88EKajwUAAJAdUKgAAAA53vbt2xUTE6PGjRurS5cuio6O1p9//mkbviQlS5cu1b///W9JUtGiRfXuu++qcuXKyp07t65du6bNmzdr1apViomJ0YIFC9SkSZNMn2Nh6dKlun37tqTYG42OwsPDQy+99JLWrVunDRs2aPjw4Uk+Vbx161aFhITIy8tLdevW1apVq5I9ZkxMjAYOHKj169dLiu2x0LVrV1WpUkXR0dHat2+f5syZo3v37mns2LGKjIw0PBHuvXv3NGDAAD148EDe3t7q1auXnn32Wbm7u+vatWtaunSptm3bpqtXr2rgwIFaunSpLBaLGjdurBUrVmjBggW2J8KnTp2qwoULy9XVNQ2ZS92KFSsUExOj9u3bq23btrp//7527dplu7kbEhKiLl266OzZs7JYLHrttdfUrFkzFS5cWHfv3tW2bdu0aNEiBQQEqHv37lq0aJHKly9vVwxxT8l7eHioSpUq6fbe1q9fr4EDByomJkaurq7q0KGDGjduLC8vL50/f17z58/XkSNH9Ndff6lLly5auHBhsr1ChgwZosDAQL344otq3769ihcvritXrmjmzJn6559/dO/ePQ0ePFirVq2yXZsrVqxQQECAbcifN998U2+//bYkJbjRvnv3br3//vuKjo5WgQIF1KlTJz3//PPKlSuX/P39tWTJEu3bt0+bNm1Sv379NGPGjGSLAB988IECAwP16quvqlWrVipQoIDOnTunKVOmyN/fX9evX9eIESM0ffp0SVLhwoW1YsUKHT16VMOGDZMk9e/f39bLonDhwobzfejQId26dUuSVLduXcP7xRUqYmJitH79eluOHhXXW6pFixYpHu/8+fMKCwuTJFWvXt1wwSQ1NWrUULFixXT9+nX17NlTH374odzd3TVlyhTdvXtXefPm1csvv2zb/qeffpIU26Mjrb2NpNihq1xcXBQVFaU///yTQgUAAMjxKFQAAIAcLyYmRjVq1NDEiRNtk7IauaFvtVo1btw4SbHDh/zyyy8qVaqUbX21atXUsmVL+fr6atSoUZKktWvXZmqh4uLFi7Yba5LUvXv3TDu3Ec2bN9e6desUEBCgAwcO2ObSiC/uRubLL7+c6rBPq1atshUpnnvuOU2bNi3Bk+o1a9bU66+/rs6dO+vq1auaOHGiGjZsqGeffTbVWDdu3Ki7d+9Kih3uJ36sPj4+at68uT766COtXbtWx44d07Fjx1S1alXly5dP+fLlSzCUU7ly5TLk6fc4MTExevXVVxNMRh1/HpOxY8fq7NmzcnFx0YQJExL1eHjppZfUpk0bde7cWSEhIfr888+1aNEiw+d/8OCBbdicIkWKpNtN5QcPHmj48OGKiYmRh4eHpk+frueff9623tfXV23atNHw4cO1ZMkSnTlzRmPHjrXdrH9UYGCg3nvvvQRP2/v4+Ojll19Whw4ddPLkSZ09e1ZHjhyRr6+vJKlSpUoJeiUVKlRIlSpVSnDcsLAwDRo0SNHR0apQoYLmzJmToGdHXJw//vijpk+frt27d2vRokXJ3swPDAzU119/nWB+CF9fX7388stq2bKlrTdPXI8ANzc3VapUKUFPjuLFiyeK04g9e/bYfrZn//Lly6tcuXI6d+5csoWKc+fO2XqzpFaouHr1qu3n4sWLG44jNc7Ozvr666/13nvv6eTJk+rbt2+idXF/Q3bs2KE9e/aoZMmSevPNNx/rvJ6ennryySd1/vx5W08RAACAnIzJtAEAABT7VHRckcKoq1ev6oknnlDevHnVrl27BEWK+Fq3bm37+ebNm48Vpz1u376tPn362G5WdujQQT4+Ppl2fiMaNmxom89h3bp1idaHhoba5mNIbaJdSZoxY4ak2DHgx44dm+RwOiVKlNDo0aMlxRab4vZJTWBgoO3nuMmeH/Xee+/p7bff1qeffmp46LCMktxN73v37mnx4sWSYq+J5IZlevbZZ9WzZ09J0uHDh+2a1Dr+5MNpGcM/OUuWLLEVi/r375+gSBHHyclJX375pe13tGjRIts+jypUqFCSPWrc3Nz0+uuv25ZPnjxpV5wrV660XS/ffPNNssNPffzxx7b5Zfz8/JI93rPPPpvkJNZeXl62G/xWqzXRnCXp4Z9//pEkubq62j2cWVyvtH379unOnTuJ1scVIatVq6YSJUqkeKyMuqak2ML0vHnzVL9+fXl6esrT01O1a9fWnDlzEkwMHtd7rn///rai6fnz5zV8+HB16NBBnTp10oQJE5Kc7yIpcb2Uzp49q9DQ0HR9TwAAAFkNhQoAAADF3iizV8mSJbVy5Ur9/fffGjx4cLLb5c2b13YzPiIiIq0h2iUwMFBdu3bVhQsXJEmVK1dO9qlyM3l6etomE96wYUOi9Vu2bFFISIjy5cunOnXqpHiswMBA2w3lhg0bqmjRosluW7NmTT399NOSpJ07dyomJibVWMuWLWv7uV+/fjpy5EiibSpVqqQRI0aoR48eyRauMoOLi0uyvUT27dtnuyma2gTvL730ku1ne576jl/0S89rfseOHZJin3RP6sZ9HDc3N9v68PBw7du3L8ntateuLReXpDuZxx/GKf5NciPiimt58+ZNsTjo4uJi+x2cP38+2UJmSr+nx4nTiIsXL0qKHdrO6ET2ceJu8scNb/Qoo8M+SUrQKycj/o76+vpqxowZOnjwoA4ePKg5c+YkGI5pzZo1OnbsmCpUqGArPh8+fFjt2rXTokWLdOTIEf39998aP368Xn/9dUNF6bhiWnR0tC5fvpzu7wkAACArYegnAAAAScWKFXus/eNuzD548ECXL1/WpUuXdO7cOZ04cUL79++3ja1utVofO9bUXLp0ST169NClS5ckSWXKlNG0adNsxRJHEzf807Vr13T48GHbEDvS/25kNmvWLNkbynHOnj1r+zn+MZLj6+urs2fP6t69e7p+/XqqT3Q3bNhQFStW1KlTp3TgwAF16NBBhQsXVr169VSnTh3Vq1dPBQsWTPW8mSF//vxyd3dPct3x48dtP/fr18/wMe25kerl5SWLxSKr1Zpsb4a0OHPmjKTYa9rLyyvFbeMXH0+fPq1XXnkl0TYp/c49PT1tP0dFRdkVZ9z8HPfv308wEXNqLl++nGDC8zgpDRMWP87o6Gg7ojQmrmdIavlOSoUKFVS2bFmdP39e69atS1BcOnPmjG2OFCOFivg9lNLzmjIiKipK//3vfyVJAwYMkJOTk2JiYjR06FCFhoaqWbNm+vzzzxUWFqYhQ4bowIEDGjZsmKZNm5biceMPIRYQEGCb2BsAACAnolABAAByPFdXV7ufFI7v3LlzmjVrlrZt25bkU7RJTRCdUQ4ePKi+ffsqKChIUuzQIjNnzkzzDfSzZ88qMjIy2fVPPvnkY00oK/1v+KewsDCtXbvWVmQICQnRtm3bJBl74jr+0DIFChRIdfv4OQkODk61UOHi4qJp06Zp2LBhtrgCAgK0fPlyLV++XBaLRT4+PmrTpo06dOjwWNfU40rpd5LUEDxGxJ/vIDXu7u4qWrSorl+/rlu3bikqKirVQpMRcTeokxtKKb7410ByN7ZTytPjfG7TO8fxixGPih9nRhRCQ0JCJKWcq5Q0b95cP//8s/bs2aN79+7ZCh5xRcgaNWokWZx5VNwQWVLmDqEnxQ455u/vr+rVq9smJN+7d6/OnTunvHnz6ocffrAVgseOHatGjRpp27ZtunTpUoIeL4+KX6iIyzMAAEBORaECAADkeI9zQ3Lp0qX64osvEjxxnS9fPpUtW1bly5eXr6+v6tWrpxYtWmT4jag1a9Zo8ODBCg8PlxTbY2DKlCmPNZ577969E0xi+yg/Pz/VqlUrzceXYm/CvvTSS1q/fr3Wr19vG0Zr8+bNCg0NVcGCBVWzZs3HOkdS4j99bnR+kiJFimjatGk6ffq01q1bpy1btuj48eOKiYmR1Wq1zeWwcOFCzZ4929ANdXsZGaYqpWs6/vueOHFiqgWaOEnN95ESX19fXb9+XeHh4Tp8+HCSE6UnJyAgQBMmTFCtWrVUs2ZN20Tk9tyIj58ne+efeVxxfw8qVqyo77//3vB+GTnBelrFXUtpnRA9rlARGRmpTZs2qW3btpL+V6gwMveMJJUqVUoFChTQ7du3dejQIUVERNhVDNy5c6d27dqlWrVqqUaNGoYLL2FhYZo4caIkaeDAgbbX9+/fLyl2/pD4vdWKFi2q0qVL68KFCzpw4ECKhYr412VmFrQBAAAcEYUKAACANDp16pStSJE7d271799fTZs2TXSzMSYmxjb0U0aZN2+eRo0aZbuR27BhQ/3nP/+Rh4dHhp43vTRv3lzr16/XlStXdOzYMVWpUkVr166VFDvsk5GbpPGHhrl9+3aq28ffxt6JrytUqKAKFSqof//+Cg4O1t69e7Vt2zatXbtW9+/f16lTpzRmzBh9++23ho9p9Mn4+/fv2xXro+K/V29vb1WqVOmxjpecBg0a2H6HO3futKtQsWXLFi1cuFALFy5U69at9eOPP0qKjT0gIMDWYyglt27dsv2c2ROb58uXT4GBgQoPD8+w/GaW3Llz6+7du2n+G1axYkWVKVNGFy5c0Nq1a9W2bVudOnVK58+fl7Ozs5o1a2b4WC+99JKWL1+ukJAQHThwQLVr1za877Jly7Rq1SpNnz5dX3/9dYpznMTn5+engIAAvfTSSwnmrAgICJCUdO+t/Pnz68KFC7Zhs5ITv3j9uD3TAAAAsjom0wYAAEijhQsX2p6c/uKLL9StW7ckn4i+ceOGoafg02r+/PkaOXKk7eZ2x44d9fPPP6dLkWLTpk06depUsv8etzdFnIYNG9rmVFi/fn2CYZ+MPnEdfy6ApCa6ftShQ4ckxfboMDL0TEREhM6cOaOjR48meP2JJ57QK6+8oq+//lq//fabbWibuAmVjYpfjEnppvD169ftOu6jypcvb/v58OHDKW574cIFTZo0SStXrpS/v79d53nllVdsN18XL15s+Ea31WrVvHnzbMutWrWy/Rz3O75w4UKqQ1HFf2/xJ0LPDHE5vnjxYqpFldWrV2vOnDn6888/HXL4n8KFC0v63435tIibVHvXrl16+PChrYD1wgsv2DUs3euvv277ee7cuYb3CwgI0Pr16yXFDkv28ssvG9rv3r17mj59uiwWi/7v//7P8Pniei2l9nc/fjHNyN8gAACA7IxCBQAAQBpdvHjR9nOVKlWS3W7lypW2n+2dlDc1u3bt0qhRo2zL7733nkaNGpXmYVrMkjt3br300kuSpD///FNbt25VWFiYihQpYvhJ/IIFC9puZG/evDnFcez37NmjCxcuSJLq1KljaGigVq1a6dVXX1X//v2T3aZEiRJ6+umnJck2BFec1IZ2iT9efXLDbZ06dUo3btxINdaU1KlTxzZfxOLFi1Ocg2TSpEn6z3/+o0GDBtkKO0blyZNHXbp0kRR7o9ho75JZs2bp5MmTkqRKlSqpQYMGtnX169eXFHsjeMmSJckeIyIiQkuXLpUUO7dIehXU4qR2vcTFabVa9euvvya73f379zV8+HB9++23GjRoULoP/5MeQ1499dRTkmJ/h2n9+xVXqAgPD9e2bdtsRQOjRcg4ccM2SbF/J1avXp3qPjExMfryyy8VEREhKbaQa3Q4vKlTpyo4OFgtW7ZM1DMmridFUgWcuL89qc2VE/c5d3Z2VqlSpQzFBAAAkF1RqAAAAEij+De74p7+f9TWrVtt45tLst0sSw/379/X4MGDbU/tdu3aVR9//HG6HT+zxd3MPHv2rGbOnGl7zZ6bt926dZMUm+eBAwfq4cOHiba5du2aPvvsM0mxxYO4fVLTsGFD2/6zZs1Kcptz587p+PHjkmLHro8v/nj6ST05H79HyC+//JJo/cOHD/XVV18ZijUlhQoV0quvvmqLN/6QYfGtWbNGv//+u22fuN+PPd577z2VK1dOUmwPpC+++CLZXgNWq1WzZ8+2DfPk6uqqkSNHJvj9v/HGG7YeK+PHj9fBgwcTHScmJkYjR4609QBp27Ztus8VktrvskOHDrY5PSZNmqTdu3cnGeeQIUNs12j79u3Tfai21OI0Iu46joyM1NmzZ9N0jGeeecZW8Jg5c6bOnj0rFxcXNW3a1O5jjRo1yjYnxODBgzV//vxkh0oLCQnR4MGDtWnTJkmxhcQPP/zQ0HkCAgI0d+5cubi46KOPPkq0vmrVqpJie2bF7zVz8uRJWzHRx8cnxXOcOHFCUmxBzp75NgAAALIj5qgAAABIoxYtWthu5I4dO1aBgYGqV6+e8uTJo6tXr2rdunXasGFDgptoDx48SLfzz5071/Y0b4kSJfTqq6/abnylpFy5cg55Uyxu+Kfw8HDb0E32PnHdtm1brV+/Xps2bdJff/2l1q1bq2vXrqpSpYqio6O1b98++fn56e7du5JiJwuPP+58Snr06KHly5fr/v37+v7773XgwAG1aNFCxYsX1/379/XPP//Iz89PYWFhcnJy0vvvv59g/7ghdCTp559/Vvfu3RUTE6Nq1apJkho3biwvLy/du3dPf/75p/r27auOHTvKy8tLJ06ckJ+fn/z9/fXkk0/q0qVLduXlUYMHD9bevXt1/fp1LVy4UCdPntQ777yjMmXK6Pbt29q0aZOWL1+umJgYWSwWjRgxIsGEwUblypVLU6ZM0bvvvqsbN25o4cKF2rBhg9q2bauaNWuqYMGCCgkJ0YkTJ7RixQrb9evi4qJvv/020Y3evHnz6uuvv9aHH36okJAQde7cWW+++aYaNWqkvHnz6sKFC5o/f75t2KennnrKVpRKT/nz55erq6siIyO1atUq1a1bV15eXipdurTy5csnLy8vjRo1Sh9//LEiIiLUs2dPvfHGG2rSpIm8vLzk7++vuXPn6tixY5JiJ9FOqadOWsVNQi5Jv/76qypUqCAXFxdVqlTJcFEk/jwQhw8f1jPPPJOmWJo3b67JkyfbPtu1a9dOUwGpXLly+u9//6t+/fopMjJSX331lebNm6c2bdro2WefVZ48eXTnzh0dOHBAS5Yssc0TUaBAAf3888+2QldqJkyYoLCwML311lsqXbp0ovUvvviiChYsqFu3bqlHjx4aMGCAwsLCbJOnV6tWTRUqVEj2+MHBwbZeefbMtQEAAJBdUagAAABIoyZNmujNN9/UwoULFRkZqVmzZiX5pH27du0UHBysjRs36urVqwoNDU2XJ6cXLVpk+/nq1atq3769of02btyY5FwaZsuTJ49efPFF/fnnn5Jiiy9xN/GNslgs+s9//qPPP/9cv//+u65cuaKvv/460XYuLi4aMGCAevbsafjYRYsW1fjx4/Xhhx/q3r17Wr9+vW0Im/g8PDz05ZdfJhpuqG7duvL09FRISIjWrFmjNWvWyNXVVQcOHJCbm5u8vLz03XffacCAAYqMjNTGjRu1cePGBMd45513VK5cuQTDfaWFt7e3fvnlF33wwQc6efKkDh8+nOR8Fbly5dKIESMMj+mflFKlSmnp0qUaNmyYNm/erKCgIM2cOdPWa+ZRJUuW1DfffJPszdtmzZrp3//+t4YNG6aQkBD98ssvSfZAqVevnn744YcMmaTY2dlZjRs31rp16xQQEGC7jr799lu98cYbkmKLbFFRUfriiy8UGhpqmxz8UeXLl9ekSZMM30C3R/HixVWlShUdO3ZMZ86cUefOnSVJc+bMMXxz/Nlnn1Xx4sV17do17dy5U2+++WaaYmnRooUmT55sW7a3CBlfw4YNNX/+fH322Wc6c+aMzp49q59++inZ7WvVqqVvvvnG8PBKFy9e1NKlS+Xh4aEPPvggyW3c3Nw0atQo9e/fX8ePH1fv3r1t6/Lly5fk3534du3aZesNl5beSgAAANkNhQoAAIDHMHLkSNWuXVtLlizRsWPHdP/+fbm7u6to0aLy8fFRhw4d9Pzzz2vx4sXauHGjIiMjtWHDBrVu3fqxzhsUFPTYkyo7oubNm9sKFc2aNUvTMdzd3TVmzBi99dZbWrRokfbv36/AwEC5u7urRIkSevHFF9WhQwc9+eSTdh+7Tp06WrNmjebPn6+dO3fqwoULevjwofLkyWM79ltvvaVixYol2rdw4cKaPXu2xo4dq6NHjyo8PFyFChXS9evXbU9sv/zyy1q9erVmzJihnTt3KiAgQHnz5tWzzz6rd955Rw0aNEjypnxalCxZUsuWLdOqVau0du1aHT16VHfu3JGLi4tKlSqlevXqqVOnTukydn7BggU1efJk/fPPP/rjjz908OBB+fv768GDB3J2dlaBAgVUtWpVNW3aVM2aNUu1x0+rVq1Uq1Yt/fLLL9q2bZsuX76s8PBwFS1aVJUqVVK7du300ksvpfucD/F9++23KlCggDZu3KigoCB5eXnpzp07CbZp3bq16tatq3nz5mn79u26dOmS7Xp55pln1KJFC7Vr1y5DezhNnjxZP/zwg3bt2qV79+4pX758CSZxTo3FYlHr1q01efJk7dixQ2FhYWnqXRM3/JO/v79cXV3TNOxTfD4+Plq5cqW2bNmiDRs26OjRo7p+/bpCQkKUK1cuFS1aVNWrV1fr1q3tnqPkP//5j6KiotS9e/cEPaEe1bhxY82ePVvjxo3TkSNH5Obmprp16+r//u//kuyFEV9cEfLpp59ONEwcAABATmSxJjegJwAAAAAgxwsMDNTLL7+ssLAwjR079rF6QyB27ox69eopJCRE33//vdq2bWt2SAAAAKZjMm0AAAAAQLIKFSqkDh06SIqd6wKP57ffflNISIhKlSplm9geAAAgp6NQAQAAAABIUa9eveTm5qa9e/fq5MmTZoeTZVmtVtvwbX369JGLC6MxAwAASBQqAAAAAACpKFKkiPr06SNJmjBhgsnRZF1//PGHzp49qypVquj11183OxwAAACHwRwVAAAAAIBURUVFqWPHjjp+/LgWLlwoX19fs0PKUiIjI/Xqq6/q6tWrWrZsmSpUqGB2SAAAAA6DHhUAAAAAgFS5uLjo+++/l6urq0aNGiWeebPPnDlz5O/vr379+lGkAAAAeAQ9KgAAAAAAAAAAgGnoUQEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmcTE7AAAZ68qVK2rSpEmS6ywWi5544gkVK1ZML730krp27Spvb+9MjtBx/frrr/ryyy/19ddfq0OHDmaHAwBwMLSxxt24cUMzZ87U9u3bde3aNUlSyZIl1bBhQ3Xv3l0FChQwOUIAgKOhnTXO399fU6dO1a5du3Tr1i098cQT8vX1VadOnVSvXj2zwwMAQyxWq9VqdhAAMk78L3cVKlRQnjx5bOuio6MVHBysK1euKCoqSvnz59ecOXNUsWJFs8J1GEeOHFHXrl318OFDChUAgCTRxhrz999/6/3339e9e/fk7OysJ598UjExMbpy5Yqio6NVqFAhTZ8+Xc8884zZoQIAHAjtrDHbt29Xv379FBYWJg8PD5UuXVpBQUEKCAiQJHXv3l2DBw82OUoASB2FCiCbi//lzs/PT7Vq1Uq0zZ07dzRkyBBt2bJFTz31lNasWSMnp5w7MtzevXvVv39/BQcHSxKFCgBAkmhjU3fv3j01a9ZMQUFBevHFF/Xtt9+qcOHCkqTLly/r008/1YEDB1SyZEn98ccfcnd3NzliAICjoJ1NXVBQkJo3b67g4GC1atVKX331lfLmzStJ+v333zV48GBFR0dr3LhxatasmcnRAkDKcs5fbwDJyp8/v0aPHi03Nzf5+/trx44dZodkivDwcI0fP17dunWzFSkAAHgcOb2NXbZsmYKCglS4cGH95z//sRUpJKlUqVKaOHGinnjiCV25ckVr1641MVIAQFaU09vZJUuWKDg4WCVKlNDo0aNtRQpJeu2112wP3P36669mhQgAhlGoACAp9gte+fLlJUlnzpwxOZrMd/HiRTVr1kwTJkyQJA0YMEAlSpQwOSoAQHaQk9vYvXv3SpIaNWqUYMiOON7e3qpevbok6Z9//snU2AAA2UNObmdLliypV199Ve+8847c3NwSrY8bCitufigAcGRMpg3AJioqSpKUO3fuJNetWrVKa9eu1bFjx3T37l25uLiocOHCqlWrlrp166YyZcokud/y5cu1ePFiXbhwQTExMapatap69eolV1dXdenSRTVr1tTcuXNTjW/v3r3q0qWL4ffz+uuva/To0Ya2vXHjhq5fv65q1app+PDhqlq1qhYvXmz4XAAApCSntrHvv/++mjVrlmT8ceJGoo2JiTF8fgAA4sup7WzLli3VsmXLZNcfPXpUklS6dGnD5wYAs1CoACBJunTpks6cOSMnJye9+OKLCdaFhYWpd+/etqciS5QooQoVKuj27dvy9/eXv7+/fv/9d82bN0+VK1e27RceHq6PPvpImzdvlhT75Sh37tz6+++/tWfPHjVt2tSuGPPmzavnnnvO8PZPPfWU4W2LFi2qqVOnqkGDBnbFBABAanJyG+vj4yMfH59k1wcFBWnfvn2SpKefftrw+QEAiJOT29nk3Lt3T35+flq2bJlcXFzUq1evxzoeAGQGChVADhYdHa179+7p4MGD+v777xUTE6P33nsv0ZBH06ZN0969e5U/f35NnTo1wQ2HI0eOqG/fvgoMDNTkyZM1btw427qJEydq8+bNypcvn8aNG2eb/OzmzZsaOHCgNmzYYFe8lStX1oIFCx7jHSevdOnSPGUCAEg3tLHGfPPNNwoNDZWHhweTfAIADKOdTdq6des0fvx4Xbx4URERESpWrJhGjBihF154IcPPDQCPi0IFkIOk1tW0V69eGjBgQKLXd+3aJScnJ/Xr1y/RU5E+Pj56++23NW7cOJ0+fdr2+r179zRr1ixJ0vfff2/7YidJRYoU0aRJk9SiRQsFBgY+xjsCAMAx0Mba7+eff9aqVaskSX379lWBAgVMjggA4KhoZ405cuRIgnk6goODtXnzZj3//PNJzhUFAI6EQgWQg1SoUCHBl5OYmBg9fPjQ9rTF7NmzFRoaqs8++0zOzs627RYsWKDIyEhZLJYkj+vh4SEptlttnK1btyoiIkLFixdXw4YNE+2TN29etWvXTlOmTEmndwcAgHloY+0zYcIEjR8/XpLUpEkThqQAAKSIdtaYzp0764MPPtCDBw+0c+dO/fDDD/r111919OhRLVy4UC4u3AYE4Lj4CwXkIMOGDUvwNEiciIgILV++XKNGjdIvv/yi6OhojRgxIsE2rq6uCg4O1qFDh+Tv76/Lly/L399fJ06c0K1btyQlnAQz7imOihUrJhtP1apV7Yr/+PHjGjVqlOHtGzRooPfee8+ucwAAkBa0scZERUVp5MiRWrhwoSSpfv36Gjt2bLI3kAAAkGhnjSpatKgkydPTU6+//rp8fX3Vtm1bHT16VCtXrlS7du3sPiYAZBYKFQDk5uamN998U4GBgRo/frwWLVqkPn36qFixYpKkBw8e6JtvvtHvv/+uyMhI236urq6qUqWKKlWqpO3btyc45p07dyTFfkFKjr1dT+/fv68DBw4Y3p45JwAAZqON/Z8HDx7oww8/1M6dOyVJLVu21Pfffy83Nze7jwUAgEQ7m5qyZcuqadOmWrVqlfbt20ehAoBDo1ABwKZJkyYaP368oqOjdfz4cduXu759+2rv3r3KlSuX3n33Xfn6+qp8+fIqXbq0XF1dtWjRokRf7uK60D548CDZ8z18+NCu+GrVqqVTp07Z+a4AADBfTm9jb9y4oV69etnGAO/Ro4cGDRpETwoAQLrIqe3s3bt3deXKFRUvXlze3t5JbhM3wbgjzqkBAPFRqABgE/9mgdVqlSQdOnRIe/fulSRNmTJFtWvXTrTfjRs3Er1WoUIFSUowKdmjTp48+VjxAgCQVeTkNvbmzZvq3LmzLl26JGdnZw0fPlxvv/222WEBALKRnNrOtm/fXpcvX9Ynn3yS7HxPV69elRQ7ETgAODInswMA4Di2bt0qKfZLXtyYm1euXLGtT2ocztDQUK1evVqSFB0dbXu9YcOGcnV11fXr17Vjx45E+4WHh2vFihXpGT4AAA4rp7axERERev/993Xp0iW5urrqv//9L0UKAEC6y6ntbL169SRJS5YsSTC0VZwrV67ozz//lCQ1btw4U2MDAHtRqAAgq9Wq9evXa/LkyZKkZs2a2SbhKlu2rG27iRMnJvjyc/bsWfXq1Uv+/v6SYr/oxSlYsKDeeecdSdKQIUMSjMd5584dDRgwIMEXRwAAsqOc3sZOmzZNx44dkyR9+eWXatq0qckRAQCyk5zezvbs2VO5cuWSv7+/Bg4cqKCgINu648ePq0ePHgoLC9MLL7ygJk2amBgpAKTOYo3rEwcgW7py5YrtC0mFChUSTfoVFRWlq1ev6vbt25KkKlWqaMaMGcqfP79tmwEDBmjNmjWSpHz58qlkyZK2sTCl2Kc44ibG3L9/v+0cYWFh6tWrl/bt2ydJeuqpp5Q7d26dOXNGUVFRqly5so4ePao6depo9uzZGZeENGrcuLGuXr2qr7/+Wh06dDA7HACAg6GNTVlERITq16+v4OBgubi4yMfHJ8XtGzRooPfeey+TogMAODraWWM2b96sjz/+WKGhoXJzc1OZMmUUHh5uK8JUq1ZNkyZNSnYOCwBwFMxRAeQgSY2x6e7uLm9vbzVq1EivvPKKWrduLReXhH8afvrpJ9WtW1eLFi3SpUuXdOrUKeXPn1+NGjXSW2+9pYYNG6pRo0a6du2aNm3apNatW0uScuXKpZkzZ+qXX37RypUr5e/vL4vFoueff17vv/++Dh48qKNHjypXrlyZ8v4BAMgotLGJnT59WsHBwZJibybFfyI1KaVLl86MsAAAWRDtbPIaNWqk3377TTNmzNCOHTt0/vx55cqVSzVq1FDr1q31xhtvyNXV1ewwASBV9KgAYJrvv/9eM2fOVMeOHTVq1CizwwEAINugjQUAIOPQzgJA+mOOCgAZ4sKFC2rYsKG6du2qiIiIROutVqu2b98uSapcuXJmhwcAQJZFGwsAQMahnQUAc1CoAJAhSpUqpfDwcO3evVtjxoxRWFiYbd39+/c1YsQInTlzRt7e3mrevLmJkQIAkLXQxgIAkHFoZwHAHAz9BCDDrF27Vv/3f/+n6Oho5c6dW08++aSio6N16dIlhYWFycvLS+PHj1ft2rXNDhUAgCyFNhYAgIxDOwsAmS/LFCo2bNggPz8/HT9+XOHh4SpatKgaNGig999/XwULFjQ7PADJOH/+vGbPnq39+/fr+vXrkqRixYqpQYMGevfdd1W8eHGTIwQAIGuijQUAIOPQzgJA5soShYpx48Zp4sSJslgseu6555QvXz4dOXJEgYGBKliwoObPn6/SpUubHSYAAAAAAAAAALCTwxcqzpw5o9dee00eHh6aMWOGnnvuOUlSeHi4Bg0apHXr1qlBgwaaOnWqyZECAAAAAAAAAAB7uZgdQGp27Nghq9Wql19+2VakkCR3d3d9/PHHWrdunfbt25du57tw4YLCwsKUK1culSlTJt2OCwBATkcbCwBAxqCNBQAAWZ3DFyqcnJwkSTdu3Ei0LigoSJKUL1++dDtfWFiYQkJC0u14AAAgFm0sAAAZgzYWAABkdU5mB5Ca+vXry8nJSfv27dO3336ra9euKTQ0VLt379Znn30mSerVq5fJUQIAAAAAAAAAgLRw+B4V5cqV03fffaeRI0dqzpw5mjNnjm1d/vz5NX78eL3yyivpfl6r1aro6Oh0Py4AAI7G2dk5U89HGwsAyCloYwEAyBiZ3cYi4zl8oUKSatSooUaNGmnt2rV69tlnlS9fPh07dkwBAQGaNm2aKlWqpFKlSqXrOUNDQ3Xo0KF0PSYAAI6oRo0amXo+2lgAQE5BGwsAQMbI7DYWGc/hCxVHjx5V9+7d5eHhocWLF6ty5cqSpMjISP373//WzJkz9a9//UurV6+Wh4eHydECAAAAAAAAAAB7OHyh4uuvv1ZwcLC+++47W5FCklxdXfXpp5/q8OHD2r9/v5YtW6ZOnTql23k9PDxUsWLFdDseAACIRRsLAEDGoI0FAABZlUMXKsLCwnTo0CE5Ozurfv36idZbLBY1aNBA+/fv19GjR9P13BaLhbHOAADIALSxAABkDNpYAACQVTmZHUBK7t+/L6vVmuKXrbjXIyMjMzM0AAAAAAAAAACQDhy6UFGgQAHly5dPUVFR2rp1a5Lb7Ny5U5ISDAsFAAAAAAAAAACyBocuVDg5Oentt9+WJI0cOVKnT5+2rYuOjtaECRO0a9cuPfHEE3r99dfNChMAAAAAAAAAAKSRQ89RIUkffPCBTp48qc2bN6tNmzZ67rnn9MQTT+jkyZO6evWqPD099d///lf58+c3O1QAAAAAAAAAAGAnhy9UuLq6atKkSVq2bJmWLVumkydPKjw8XIULF1bHjh3Vq1cvPfnkk2aHCQAAAAAAAAAA0sDhCxWSZLFY9MYbb+iNN94wOxQAAAAAAAAAAJCOHHqOCgAAAAAAAAAAkL1RqAAAAAAAAAAAAKbJEkM/AQAAAACQ3qKiouTn56cTJ06oUqVK6tKli1xc+G8yAABAZuMbGAAAAAAgR5o7d67mzZsnSTpw4IAsFou6detmclQAAAA5D0M/AQAAAABypD179qS4DAAAgMxBoQIAAAAAkCOFh4enuAwAAIDMQaECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApnExOwAAAAAAANJD4OyvZI2MMLx99N3ARMsB0z5PdT+Lq5sKdf3S7vgAAACQNAoVAAAAALKEqKgo+fn56cSJE6pUqZK6dOkiFxf+S4P/sUZGSFGR9uyReNnA/o/uBQAAgMfDt3oAAAAAWcLcuXM1b948SdKBAwdksVjUrVs3k6MCAAAA8LiYowIAAIOioqI0c+ZMDRo0SDNnzlRUVJTZIQFAjrJnz54UlwEAAABkTfSoALIghj0AzMGTvABgrvDw8BSXAQAAAGRN9KgAsqC4m6UHDhzQvHnzNHfuXLNDAnIEnuQFAAAAAABIfxQqgCyIm6WAOXiSFwCAjMHwigAAADkbY8UAWRA3SwEAAJCdMLwiAABAzkaPCgAAAACAqczqMezm7JTiMgAAADIH38IAAAAAAKYyq8dw9aJPpLgMAACAzMHQTwAAAACAHKld5eKSpDNBD1XeO7dtGQAAAJmLQgUAQ6KiouTn56cTJ06oUqVK6tKli1xc+BOSHeTk3+2XGxcpItr4ZJ2BD+8lWh66fr6hfd2cXfRVk452xQcAADKWi5NFHauWMDsMAACAHC9n3IkC8NiY4DD7ysm/24joKLsKFVZZEy3bs39a5ORCEgAAAAAAyBm40wE4gKzwVHdSExzmlJvZ2R2/W8eWkwtJALK/wNlfyRoZYXj76LuBiZYDpn1uaF+Lq5sKdf3SrviQdpn5/Ta3q7uGNXrDrvgAAADgWChUAA4gKzzVbdYEh8h4/G6Nc3qkJ8OjyxmBQhKA7MwaGSFFRdqzR+Jlg/s/uicyVmZ+v3V1drYrNgAAADgeJ7MDAAAgq/AqWzLF5ZSk9SYKhSQAAAAAAJDd0aMCANIZcwpkX0Xr+EqSHl4PVO5ihWzLAAAAAAAASDvunAFZkBnDz8A45hQwJisWdCzOTipWv/pjH8eeMdmdH9xOtMx47ACQdWTF9s4MfL8FANiLNhbIXvj0AlmQV9mSCg0ISrAMx8GcAsbk5IKOPWOyVy/iJf87IQmWGY8dALKOnNze2YPvtwAAe9HGOjYKSbAXVweQBT3O8DNMNpjxmFPAGAo6xrSrXFySdCboocp757YtAwCyBto7YxheEQBgL9pYx0YhCfaiUAFkQek1/AxgJgo6xrg4WdSxagmzwwAApJEZ7V1WfIKR77cAAHvxf0rHRiEJ9nLsb6sAMpQ94+RH3w1MtMw4+Y7py42LFBEdZXj7wIf3Ei0PXT/f0L65Xd01rNEbdsUHAEBauTk7pbiMWDzBCAAAzEYhCfaiUAGHkRWf/Mrq7BknP/Fo91bGyXdQEdFRdhUqrI/8hqyyGt4//lBi9hS+JCaJBgDYr3rRJ+R/NzTBMhLjCUYAAABkNdwFhsPgyS+kN4pfmcu+wheTRAMA7OcI8/ZkVs/Fx+m1yBOMAAAAyGq4YweHwZNfSG8UvxybI9xsAgBkLY4wb4+9PRctLs6Jlo3sT69FAACQHniIE1kFVyUcBk9+Ib2lV/HL3psDzOdhjCPcbAIAIKN5lS2p0ICgBMv2otciACAnyMz5Ft2cXfRVk452xZdVpddDnNwbQUajUAEg20qv4pe9Nwey2nweTo88SfHoMgAASLuidXwlSQ+vByp3sUK25YxEr0UAQFaUmfMt5iTp9RCnvfdG3JwtiZcd+N4IzMfdKACGuDk7pbiMrCs9nvQEAABJszg7qVj96pl6TnotAgDsxfBA2ZdZI5hUL/qE/O+GJlgGUsJfHACG0MBkX2Y86QkAAAAAcBzM8Yj0Rg9P2ItCBQBDaGCyLzOe9ASQM/BkHgAAQNaQXsMDAXHo4Ql78T9FZBgmQcpeHKGBycxrKreru4Y1esOu+AAACWXFJ/MorgAAgJzIrOGBHgfzLQLZC59gZBgmQUJ6y8xrytXZ2a7Y4mM+DwCIlRWfzDOruEKBBAAAwD7MtwhkL/zvBw6DSjjSm1nXFPN5AECsrPhknlnFlazW+4TCCgAAji1w9leyRkYY3j76bmCi5YBpnxva1+LqpkJdv7QrvvTAfItA9sL/JuAwqIQjvZl1TTGfBwBkXWYVV7Ja75OsVlgBACCnsUZGSFGR9uyReNng/o/umVly6nyLDIuN7IpCBRyGWZVwngjMvsy6phxhPg8AQNaS1XqfZLXCCgAASBlDGGcdWWVYbMBe3I2FwzCrEs4TgdlXTn26AgCAjJbVCisAACBlDGEMwGwUKpDj8UQgAAAAACArYWQApDeGMAZgNlox5Hg8EQgAAAAAyEoYGQDpjSGMjcmKRUKnR+J7dBlwFFyZyBYYMw8AgIwXOPur2IkZDYq+G5hoOWDa54b2tbi6qVDXL+2KLylmTTaYWblKrzwBALIWRgYAzJEVi4ReZUsqNCAowTLgiChUAAAAwBBrZIQUFWnPHomXDe7/6J5pZdZkg/bmys3ZknjZwP7plScAQNbCyACAObJikbBoHV9J0sPrgcpdrJBtGXA0FCqQ7WTFpz0BAEDOZvYElmb1PAEAADBDWkfmyIpFQouzk4rVr252GECqKFQg28mKT3sCAADHYNYYvmZPYGlWzxMAAAAAkChUAAAAADZmjeHLBJYAAADmsGdkDkblADIOhQoAAABkCDdnpxSXHRFj+AIAAOQs9ozMkdZ5xSRG5QBSQ6ECOV5WvIkCAEBWYPa8C2nBGL4AAABITlb8fgtkFRQqkOPRyAAAkDHMnncBGcesuTwAIDtj+BnA8fH9Fsg4/I8COR6NDAAAGYN5F7Ivs+byAIDszJ7hZxIPImNl+BkgE/D9Fsg4FCqQ49HIAAAA2Ie5PAAAWUVUVJT8/Px04sQJVapUSV26dJELPQEBwOHwlxkAAACAXZjLAwCQVcydO1fz5s2TJB04cEAWi0XdunUzOSoAwKOYNRgAAAAAACALcXN2SnEZ/7Nnz54UlwEAjoEeFQAAANkcQx4AAJC9VC/6hPzvhiZYRtLCw8NTXAYAOAb+hwoAAJDNMeQBAADZS7vKxSVJZ4Ieqrx3btsysj4eMAGQU/GXDgAAIJtLasgDChUAAGRdLk4WdaxawuwwkAF4wARATkWhAgAAIJtjyAMAAJBdBM7+StbICMPbR98NTLQcMO1zQ/taXN1UqOuXdsX3uHjABEBORaECAAAAAAAAWYI1MkKKijS8vZuzJfGywf2tdkWWPnjABEBO5WR2AAAAAAAAAEBGeHSicSYeBwDHRI8KAAAAAAAAZEtmTzz+5cZFioiOMrx94MN7iZaHrp9vaN/cru4a1ugNu+IDAEdBoQIAAAAAAAAZKioqSn5+fjpx4oQqVaqkLl26yMUl429LmT3xeER0lF2FCouLc6Jlo/u7OjunvhEAOKgsU6gICgrS1KlTtXnzZl27dk25cuWSj4+PevfurVq1apkdHgAAAAAAAJIxd+5czZs3T5J04MABWSwWJolOglfZkgoNCEqwDAA5QZaYo+LcuXNq3bq1Zs2apcjISDVo0EAlSpTQjh079K9//Ut//vmn2SECAAAAAAAgGXv27ElxGbGK1vFVkdo+ylO6mIrU9lHROr5mhwQAmcLhe1RERUXp448/VmBgoLp27apPP/1Uzv+/K9uSJUv0+eefa8iQIdq1a5fc3NxMjhYAACBz2DPeMWMdAwAAs4WHh6e4jFgWZycVq1/d7DAAINM5fKFiw4YNOnXqlF544QUNHTo0wbr27dtr7dq1On/+vI4fP65q1aqZEyQAAEAms2e8Y6usiZYZ6xgAAAAA4CgcvlCxZs0aSVLPnj2TXD99+vTMDAcAAAAAAAAAAKQjhy9UHD16VJJUrVo13b17V3/88YdOnjwpFxcXPf/882rWrJltKCgAAAAAAAAAAJC1OHShIiIiQlevXpW7u7uOHTumgQMH6s6dO7b18+bNU5UqVTR58mQVLlw4Xc9ttVoVHR2drsfMKXJq4Sgt10tOzBV5Ms7eXJEn43JirlLKU2bngzb28XD9GkOejMmJeZLIlVHkyRjaWDwuMz83fM6N4/9nxnBNGUOejEsuVzk1H9mZQxcqHjx4IEmKiYlRv3795Ovrq08++URlypTR6dOn9c033+iff/5R3759tWjRIjk5OaXbuUNDQ3Xo0KF0O15O4eTkpOrVc+akT0eOHFFMTIzh7XNqrsiTcfbkijxxTaUmpTzVqFEjU2OhjU27tF6/Ti4uKS47Oj7nxpAn48iVMeTJGNpYPA6zPzeP8zn/cuMiw3NeSVLgw3uJloeun29o39yu7hrW6A3D58oI/P/MGNoOY8iTccnlKrPbWGS89LuznwEiIiIkSZGRkXryySc1ffp0Va1aVblz51b16tU1a9YsFSxYUP/88482btxocrQAAACOyatsyRSXAQAA7BURHWXXP6usCfa3ymp8/xjjBREAQNbk0I/TeXh42H7u1KmTXB55+i9v3rxq3bq1Zs6cqd27d6tp06bpeu6KFSum2/GQ/fn4+JgdQpZAnowjV8aQJ2McKU+0sZmvaB1fSdLD64HKXayQbTmrcKTr15GRJ+PIlTHkyRhHyhNtrDmioqI0d+5cnTx5Us8884w6d+6c6P6Fo3Kk69fRkStjyJMx5Mk4cpVzOHTLmSdPHrm5uSkiIkIlSyb95F/c60FBQel6bovFwlhnsAvXizHkyThyZQx5MsaR8kQbm/kszk4qVj/rdhXnejGGPBlHrowhT8Y4Up5oY83h5+enBQsWSJIOHjwoZ2dndevWzeSojMnM6yWrD0XJZ8sY8mQMeTKOXOUcDj30k7Ozs8qXLy9JunnzZpLb3Lp1S5JUoECBTIsLAAAAAABAkvbs2ZPiMmIxFCUAICUOXaiQpIYNG0qSVq5cmWid1WrVtm3bJEk1a9bMzLAAAAAAAAAUHh6e4jJiFa3jqyK1fZSndDEVqe2T5YaiBABkLIcvVLz11lvy8vLSrl27NHnyZFmtsZMvWa1WjRs3TkePHlXp0qXVqFEjkyMFAAAAAABAUuKGony6wysqVr+6LM4Of0sKAJCJHH5AwMKFC+unn35S//79NXbsWC1btkwVKlTQ6dOndfHiReXLl09jxoyRm5ub2aECAAAAAAAAAAA7ZYny9UsvvaSVK1eqXbt2Cg8P15YtWxQREaGOHTtq6dKlzP4OAAAAAAAAAEAW5fA9KuKULl1a3333ndlhAAAAAAAAAACAdJRlChUAAAAAAAAZ7cuNixQRHWV4+8CH9xItD10/39C+uV3dNazRG3bFBwBAdkShAgAAAAAA4P+LiI6yq1BhlTXRstH9XZ2d7YoNAIDsKkvMUQEAAAAAAAAAALInChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAACkkZOLS4rLAAAgdRQqAAAAAAAA0sirbMkUlwEAQOoo8wMAAAAAAKRR0Tq+kqSH1wOVu1gh2zIAADCOQgUAAAAAAEAaWZydVKx+dbPDAAAgS2PoJwAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQuZgcAAAAAAAAAAEBmOnnypJYsWaLdu3fr5s2bCg8Pl7e3t8qXL6+GDRuqffv2ypUrl9lhpruKFStKkmbNmqW6deuaHM3/UKgAAAAAAAAAAOQY48aN06RJkxQTE6M8efLoySeflKurqwIDA7V9+3Zt375d06dP18SJE1WlShWzw80RKFQAAAAAAAAAAHKEpUuXauLEifL09NR3332npk2bytnZ2bb+3Llz+uyzz3To0CH16NFDf/zxh7y9vU2MOGdgjgoAAAAAAAAAQI4wefJkSdKnn36q5s2bJyhSSFK5cuU0adIkFShQQHfu3JGfn58ZYeY4FCoAAAAAAAAAANlecHCwLl26JEny9fVNdjtvb2+9/PLLkqQjR45kSmw5HUM/AQAAAAAAAACyPReX/90O37x5sypXrpzstv3791eXLl1UoECBBK9HRUVp1apVWrt2rY4dO6a7d+/KxcVFhQsXVq1atdStWzeVKVMmwT6dO3fWvn37NGvWLOXJk0eTJk3SgQMHFB4erjJlyuhf//qX2rZtK6vVqiVLlmjBggU6f/68nJ2d5evrqw8//FDVqlVLcMzGjRvr6tWrWrFihW7evKnJkyfr1KlTcnNzU8WKFdWlSxdbscWoW7duaebMmdqyZYuuXr0qJycnlS1bVq1atVKnTp3k7u5u1/HsQaECAAAAAAAAAJDt5c6dW88995wOHDig8ePH6/Lly3rjjTf03HPPJRoCqlChQipUqFCC18LCwtS7d2/t3btXklSiRAlVqFBBt2/flr+/v/z9/fX7779r3rx5SRZB1q5dq6VLl8rNzU1PPfWUrl27puPHj2vw4MEKCQnRgQMH9Pvvv6tAgQIqU6aMzpw5o507d+qvv/7S4sWL9cwzzyQ65tKlSzV37ly5ubmpfPnyunXrlvbu3au9e/eqc+fOGjZsmKHc7N+/X3379tXdu3fl6uqqp556SlarVceOHdPRo0f122+/afr06Ylykl4Y+gkAAAAAAAAAkCMMHz5cnp6eslqtWr58ud59913VrFlTvXv31tSpU3X48GHFxMQkue+0adO0d+9e5c+fX4sXL9amTZu0dOlSbdmyRYsXL1ahQoUUEhJimwfjUQsXLlSTJk20bds2LV++XNu2bVP9+vUlSaNGjdL69ev1ww8/aNeuXVq+fLnWrVunYsWKKSIiQnPmzEnymHPnzlXdunW1ZcsWLVu2TFu3btWoUaPk4uKiuXPnatWqVanm5ObNm7YiRceOHbVr1y6tWrVKq1ev1vr16+Xr66uTJ09qwIABxpKcBhQqAAAAAAAAAAA5QuXKlbV48WLVqFHD9tqDBw+0detW/fTTT+rYsaPq16+vsWPHKjQ0NMG+u3btkpOTk/r16ycfH58E63x8fPT2229Lkk6fPp3kufPly6fRo0crb968kiR3d3d169ZNkhQTE6OePXuqTZs2tu1LlCih9u3bS5KOHTuW5DGLFy+uCRMm2Iaoslgs6tixo3r06CFJmjBhQqo5mTFjhu7evavGjRtr1KhR8vLysq178skn9fPPPytPnjz6+++/tXXr1lSPlxYUKgAAAAAAAAAAOcbTTz+t+fPna8WKFerXr5+qV68uV1dX2/rbt29r8uTJat26tW7cuGF7fcGCBTpy5IjeeuutJI/r4eEhKXaIqKTUqlVLnp6eCV4rUaKE7ecGDRok2qdw4cKSYospSenYsaNy586d6PW4GC9cuKDz588nuW+cP//8U5LUunXrJNcXLFhQ9erVkxQ7t0dGYI4KAAAAAAAAAECOU6lSJVWqVEn9+/dXaGioDhw4oB07dui3337T7du3denSJX300UdauHChbR9XV1cFBwfr0KFD8vf31+XLl+Xv768TJ07o1q1bkpTs0FFFixZN9Fr8Aom3t3ei9fEnAE/Koz074hQvXlx58+bV/fv35e/vr7Jlyya53cOHD3X16lVJ0s8//yw/P78kt4vbJrWiR1pRqAAAAAAAAAAA5GgeHh6qV6+e6tWrp48++kifffaZVq9erUOHDunYsWOqUqWKHjx4oG+++Ua///67IiMjbfu6urqqSpUqqlSpkrZv357iOVJisVjsjvuJJ55Idp2np6fu37+ve/fuJbtN/J4ayQ1ZFd/9+/ftC9AgChUAAAAAAAAAgGzviy++0J49e/T666/r/fffT3a7XLlyaeTIkVq/fr0iIyN14cIFValSRX379tXevXuVK1cuvfvuu/L19VX58uVVunRpubq6atGiRSkWKjLCo/NoxBdXhIibvyIp8Ysnv//+uypUqJB+wdmBOSoAAAAAAAAAANleeHi4Ll68aJuTISV58uSxzf3g7e2tQ4cOae/evZKkKVOmaMiQIWrRooWefvpp2/BN8eezyCzJ9YK4dOmSHj58KCl2To7keHl5qWDBgpKks2fPJrvdqVOndOLECQUHBz9GtMmjUAEAAAAAAAAAyPbiJos+evSoli1bluK2O3bs0N27d5UvXz75+vrqypUrtnVVq1ZNtH1oaKhWr14tSYqOjk7HqFO2bNmyJOfEWLBggSSpWrVqKlasWIrHaNiwoSTpl19+SfJY9+/fV5cuXdS2bVvNmTPn8YNOQoYUKqKjo7V+/Xr98MMP+uKLLzR27Fjt2rUrI04FAAAAAAAAAECq6tWrp2bNmkmShg0bpm+++SZBAUKK7XWxdOlSDRgwQJI0YMAA5c6dO8Fk1BMnTkwwR8XZs2fVq1cv+fv7S0p5OKb0dvToUQ0fPtx2zpiYGP3yyy+aPXu2JOnjjz9O9Ri9e/eWp6en9u/fr0GDBikoKMi27urVq+rdu7fu3r2rvHnzqlOnThnyPtJ9jorAwED16NFDZ86ckdVqtb0+depU1atXTxMnTpS7u3t6nxYAAAAAAAAAgBSNGTNGnp6eWrFihfz8/OTn56fixYurQIECCg8Pl7+/vyIiIuTq6qqBAwfq7bffliRVrlxZLVq00Jo1azRz5kwtW7ZMJUuW1N27d23Fjnr16mnnzp16+PChHjx4oDx58mT4+6lQoYKWLFmiNWvWqGzZsrpx44YCAwPl5OSkoUOHqnbt2qkeo3Tp0vrPf/6jjz/+WKtWrdK6dev09NNPKzIyUv7+/oqKipKnp6emTp2a4nwXjyPdCxWff/65zp8/r3fffVcvvPCC8ubNq5s3b2rRokXauXOnxo4dqyFDhqT3aQEAAAAAAAAASJGbm5tGjx6tTp066Y8//tDevXt18+ZNnTx5Uh4eHipTpozq16+v9u3bJ+hFIUk//fST6tatq0WLFunSpUs6deqU8ufPr0aNGumtt95Sw4YN1ahRI127dk2bNm2yDTWVkbp06SJPT0/NnDlTp0+flpeXl5o1a6YePXrI19fX8HEaNGig1atXa/bs2dq+fbsuXLig6OholShRQvXq1VP37t1VqlSpDHsf6VqoePDggXbs2KGePXvq//7v/xKsa9asmRo3bqxVq1ZRqAAAAAAAAAAAmObZZ5/Vs88+a9c+zs7O6tixozp27JjsNps3b0702ty5c5PdvmTJkjp16lSy69u1a6d27dqlGFerVq3UqlWrFLeJk9K5ihUrpqFDh2ro0KGGjpWe7JqjYsyYMbp//36y6x8+fKiYmBiVLFky0ToPDw95e3unuD8AAAAAAAAAAMhZ7CpUTJ8+XS+//LJmz56dYLKQOIUKFZK3t7dmzpypCxcu2F6Pjo7W7Nmzde7cOburVAAAAAAAAAAAIPuyq1Axe/ZslShRQqNHj1bz5s21cuXKhAdzctKgQYN08eJFtWzZUrVr11aDBg3k6+ur77//Xu7u7vr000/T9Q0AAAAAAAAAAICsy65CRe3atbVs2TL9+OOPslqtGjx4sF5//XXt3LnTts3rr7+uX3/9VY0aNVKuXLl0+/Zt5cuXT82bN9eiRYvk4+OT7m8CAAAAAAAAAABkTWmaTPu1115T8+bNNW/ePE2ePFk9e/ZUnTp19Mknn6hy5cry9fXVzz//nN6xAgAAAAAAAACQ423atMnsENKVXT0q4nN1dVXXrl31559/qnv37tq/f7/at2+vgQMH6sqVK+kZIwAAAAAAAAAAyKbSXKiIkydPHg0aNEjr1q1T69attWbNGrVo0ULffvut7ty5kx4xAgAAAAAAAACAbOqxCxVxihYtqtGjR2vZsmWqWbOm/Pz81LRpU02ZMkXh4eHpdRoAAAAAAAAAAJCN2F2oOHXqlD766CPVr19fVatWVf369fXxxx/rzJkzkqRnnnlGM2bM0KxZs1SqVCmNHTtWTZs21eLFi2W1WtP9DQAAAAAAAAAAgKzLrkLFP//8o7feekvr1q1TcHCw8uXLp7t372rNmjXq2LGjjh8/btu2Tp06Wr58uX744Qe5uLjoiy++0GuvvaaNGzem+5sAAAAAAAAAAABZk12Fip9++klhYWEaPny4Dh8+rB07dujIkSMaPny4QkNDNWbMmET7tG7dWmvXrtWgQYMUGBiofv36pVvwAAAAAAAAAAAga7OrUHHo0CE9/fTT6tSpk5ycYnd1cnJSp06d9PTTT+vAgQNJ7ufm5qbu3btrw4YN6t69++NHDQAAAAAAAAAAsgW7ChXu7u4KCgpSREREgtcjIiJ0584d5cqVK8X9vby8NGjQIPujBAAAAAAAAAAA2ZKLPRs3aNBAK1eu1Hvvvaf27dsrf/78CgoK0sKFCxUUFKT27dtnVJwAAAAAAAAAACAbsqtQMXToUF25ckW7du3S7t27ba9brVb5+vpq8ODB6R4gAAAAAAAAAADIvuwqVOTPn1/z58/Xrl27tH//fgUGBsrLy0s1atRQgwYNbPNWAAAAAAAAAACArMXf319t27ZVhw4d9Pnnn2faee0qVMSpW7eu6tatm96x2OXDDz/UunXr9N1336ldu3amxgIAAAAAAAAAyDq+3LhIEdFRZodhiJuzi75q0jHDz3Pr1i317dtXoaGhGX6uR6WpUGG2xYsXa926dWaHAQAAAAAAAADIgiKio7JMoSIznDhxQh999JEuXrxoyvnTPFZTWFiYFi9erJiYmGS3GTJkiPz8/BQWFpbW0yRy4cIFffvtt+l2PAAAAAAAAAAAcqLg4GD9+OOP6tixoy5evKiSJUuaEkeaChW7du1Ss2bN9MUXX+j48eNJbhMcHKzffvtN3333nV555RXt3bv3sQKVpIiICA0cOFBOTk6qXLnyYx8PAAAAAAAAAICcys/PT9OnT5e3t7cmTZqktm3bmhKH3YWKrVu3qnfv3rp586ak2Mk1knLv3j3VrVtXFotFAQEB6tmzp3bv3v1YwY4dO1bHjh3TF198oWLFij3WsQAAAAAAAAAAyMmKFi2qwYMHa926dWrcuLFpcdhVqLh3756GDBmiqKgo1apVS6tWrdKrr76a5LalSpXSjBkztHr1alWrVk2RkZH69NNP9eDBgzQFumvXLs2aNUutWrVSmzZt0nQMAAAAAAAAAAAQq0OHDurevbty5cplahx2Taa9cOFC3blzR3Xr1tW0adPk7Oyc6j5lypTRnDlz9M477+j48eNasmSJunbtaleQQUFB+vTTT1W0aFGNGDHCrn3Tymq1Kjo6OlPOld0YuS6yo7RcLzkxV+TJOHtzRZ6My4m5SilPmZ0P2tjHw/VrDHkyJifmSSJXRpEnY2hjsw+uX2NyYp4k/n9mFNeUMeTJuORylVPzkZ3ZVajYsmWLLBaLPv30U7suBnd3dw0bNkxvv/22Nm7caHeh4rPPPtPt27c1Z84ceXl52bVvWoWGhurQoUOZcq7sxMnJSdWrVzc7DFMcOXIkxcnlH5VTc0WejLMnV+SJayo1KeWpRo0amRoLbWzacf0aQ56Myal5ksiVUeTJGNrY7IHr15icmieJ/58ZxTVlDHkyLrlcZXYbi4xn19BPZ8+eVYECBfTMM8/YfaLq1aurYMGCOnPmjF37zZs3T5s3b1aPHj1Us2ZNu88LAAAAAAAAAAAcl109Kh4+fJimIkWc4sWL6/jx44a3P3PmjL7//ntVqVJFH330UZrPmxYeHh6qWLFipp4TWZuPj4/ZIWQJ5Mk4cmUMeTLGkfJEGwt7OdL168jIk3HkyhjyZIwj5Yk2FvZypOvX0ZErY8iTMeTJOHKVc9hVqPD09FRgYGCaTxYUFCQ3NzfD248ZM0bh4eHKlSuXhg4dmmDdsWPHJEmLFi3Srl279MILL+jNN99Mc2yPslgsjHUGu3C9GEOejCNXxpAnYxwpT7SxsBfXizHkyThyZQx5MsaR8kQbC3txvRhHrowhT8aQJ+PIVc5hV6GiTJky+ueff3Tnzh3lz5/frhMFBQXp+vXrKlOmjOF9QkJCJEn79+/X/v37k9zm4MGDOnjwoFxcXNK1UAEAAAAAAAAAADKeXYWKOnXq6MiRI5ozZ44GDBhg14nmzZun6OhoVatWzfA+c+fOTXZd3759tXHjRn333Xdq166dXbEAAAAAAAAAAADHYFehomPHjpo+fbpmzZql559/XvXr1ze03549ezRlyhRZLBa1adMmTYECAAAAAAAAAJAe3JztujVuqqwUa1rZ9Q6LFy+ufv366T//+Y8++OADde3aVd26dVO+fPmS3D44OFgzZszQnDlzFB0drZYtW+qFF15Ij7gBAAAAAAAAAEiTr5p0NDsExGN3KaZPnz46fPiwNm/erKlTp2rGjBmqVKmSnnnmGXl7eysyMlJ37tzRmTNndOLECcXExMhqtapmzZoaPXp0RrwHAAAAAAAAAADwmPr376/+/ftn+nntLlRYLBZNmjRJU6dO1bhx4xQVFaV//vlHR48eTbCd1WqVJHl4eKhv377q1q2bXFzSr4vKzz//nG7HAgAAAAAAAAAA5khz5aB3795q06aNli5dqt27d+v8+fMKDg6Wh4eHChUqpDJlyqhJkyZq3LhxskNDAQAAAAAAAACAnO2xujgUKVJEffv2Vd++fdMrHgAAAAAAAAAAkIM4mR0AAAAAAAAAAADIuezqUdGwYcPHPqHFYtHmzZsf+zgAAAAAAAAAACDrs6tQcePGDVksFttE2WlhsVjSvC8AAAAAAAAAAMhe0jRHhcViUaVKldSiRQsVLFgwvWMCAAAAAAAAAAA5hF2FikGDBmnNmjU6evSojh8/rlOnTqlmzZpq2bKlmjVrJi8vr4yKEwAAAAAAAAAAZEN2FSp69OihHj166PLly/rjjz+0Zs0a7d69W3v27NHIkSNVr149tWrVSk2aNJGnp2dGxQwAAAAAAAAAALKJNA39VKpUKfXp00d9+vTRhQsXtHr1aq1Zs0ZbtmzR1q1b5e7uroYNG6pVq1Zq0KCB3Nzc0jtuAAAAAAAAAACQDaSpUBFfmTJl1K9fP/Xr10+nT5+2FS3Wrl2rdevWKXfu3GrSpIlatmyp+vXry9nZOT3iBgAAAAAAAAAA2cBjFyriq1ChgipUqKCPP/5Yx48ftxUtfvvtN61cuVJeXl5q1qyZRo4cmZ6nBQAAAAAAAAAAWZRTRh24cuXKGjRokDZt2qThw4fL09NTwcHBWrx4cUadEo+IiorSzJkzNWjQIM2cOVNRUVFmhwQAAAAAAAAAQALp2qMivsOHD9uGf7p+/bqsVqskqUSJEhl1Sjxi7ty5mjdvniTpwIEDslgs6tatm8lRAQAAAAAAAADwP+laqDh06JCtOHHjxg1bcaJ48eJq1qyZWrRoIR8fn/Q8JVKwZ8+eRMsUKgAAAAAAqYmKipKfn59OnDihSpUqqUuXLnJxybBnHQEAgIl+++03LVmyRCdPnlRoaKgKFCigOnXqqHfv3ipbtmymxPDY3zIOHjyotWvXav369QmKE8WKFbMVJ3x9fR87UNgvPDw8xWUAAAAAAJJCD30AQHYXOPsrWSMjzA7DEIurmwp1/TLdj2u1WvXJJ59o1apVcnV1VdWqVeXt7a2TJ09q+fLlWrt2rSZNmqQ6deqk+7kflaZCxYEDB2zFiZs3b9qKE4ULF1bz5s3VokULVa9ePV0Dhf0fnui7gYmWA6Z9bmjfjLr4AQAAAACOjx76AIDszhoZIUVFmh2GIdYMOu7KlSu1atUqFS5cWDNmzFCFChUkSdHR0Ro3bpwmT56sTz75RBs2bJCnp2cGRRHLrkLFN998o/Xr1ysgIMBWnChUqJCaNWum5s2b6/nnn8+QIBHL3g+Pm7Ml8bLB/TPq4gcAAAAAOD566AMAkP0tWbJEkjRw4EBbkUKSnJ2dNWDAAG3cuFFnzpzRrl279PLLL2doLHYVKubOnSuLxSJnZ2fVrl1bLVq00PPPPy8nJydJ0uXLlw0dp1SpUvZHCrtVL/qE/O+GJlgGACA7YfxsAACyF9p2AAAyj5eXl8qVK6caNWokWmexWFSmTBmdOXNGAQEBGR5Lmlr76Oho7dy5Uzt37rR7X4vFouPHj6fltLBTu8rFJUlngh6qvHdu2zIAANkF42cDAJC90LYDAJB5Jk6cmOy66OhoHTt2TFLsfNQZze5CRdyQT2n1uPvDOBcnizpWLWF2GAAAZBjGzwYAwJgvNy5SRHSU4e0DH95LtDx0/XxD+7o5u+irJh3tii8ObTsAAI5h/vz5unr1qvLnz6/atWtn+PnsKlRs3Lgxo+IAAACwG+NnAwBgTER0lF2FCusjMxdaZbVr/7SibQcAwHy7d+/WDz/8ICl2/goPD48MP6ddhYoSJXg6Py0YYxMAAAAAkJU4PfJ/1keXAQBA9rR582YNGDBAEREReuedd9ShQ4dMOS/fNDIBY2wCAAAAALISr7IlFRoQlGDZKFdn54wICQAAZLC5c+fqu+++U3R0tDp37qzPP/88085NoSITMMYmAADGZOb42bld3TWs0Rux+83+StbICOOBPgaLq5sKdf0yU84FAEBaFa3jK0l6eD1QuYsVsi0DAIDsJyoqSiNHjtTChQtlsVg0cOBA9e7dO1NjoFCRCRhjEwAAY+wdP9vi4pxo2ej+8Z/2tEZGSFGRhs/7OKypbwIAgOkszk4qVr/6Yx/H3ocBou8GJloOmGbsaU4eBgAAwH5hYWH64IMPtGPHDuXKlUvff/+9mjdvnulxUKgAAABZ1uMMSwEAADKe/Q8DPFrStxren4cBAACwT3R0tK1I4e3trSlTpsjHx8eUWChUpIFZw1IAAICEGJYCAAAAAIC0mTRpknbs2CFPT0/5+fmpfPnypsVCoSIN7B2WwvrIcx1WWdM0LAUAAEgovYalAAAAAAAgJwkODtaMGTMkSYULF9aUKVOS3bZNmzZ68cUXMzQeChWZwMnFJcVlAAAAAAAAAEDmsbi6ZZlhAy2ubul+zH379ikkJESS5O/vL39//2S3rVq1KoWK7IDxswEAAAAAAADAcRTq+qXZIZiqadOmOnXqlNlh2FCoyASMnw0AAAAAQOrcnJ1SXAYAANkThYpMwPjZAAAAAACkrnrRJ+R/NzTBMgAAyP4oVAAAAAAAAIfQrnJxSdKZoIcq753btgwAALI3ChUAAAAAAMAhuDhZ1LFqCbPDAAAAmYzBHgEAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYxsXsAIz67bfftGTJEp08eVKhoaEqUKCA6tSpo969e6ts2bJmhwcAAAAAAAAAANLA4XtUWK1WDRw4UJ9++qkOHjyocuXK6aWXXpKzs7OWL1+udu3aaffu3WaHCQAAAAAAAAAA0sDhe1SsXLlSq1atUuHChTVjxgxVqFBBkhQdHa1x48Zp8uTJ+uSTT7RhwwZ5enqaHC0AAAAAAAAAALCHw/eoWLJkiSRp4MCBtiKFJDk7O2vAgAEqX768bt26pV27dpkVIgAAAAAAAAAASCOHL1R4eXmpXLlyqlGjRqJ1FotFZcqUkSQFBARkdmgAAAAAAAAAAOAxOfzQTxMnTkx2XXR0tI4dOyZJKlasWGaFBAAAAAAAAAAA0onDFypSMn/+fF29elX58+dX7dq10/XYVqtV0dHRCV5zdnZO13NkFY/mITXkybicmCvyZByfPWO4poxJKU+ZnQ/a2P/h+jWGPBlDnowjV8aQJ2NoYx0T168x5Mk4/n9mDNeUMeTJuORylVPzkZ1l2ULF7t279cMPP0iKnb/Cw8MjXY8fGhqqQ4cO2ZadnJxUvXr1dD1HVnHkyBHFxMQY2pY8GcuTlHNzRZ6M47NnDNeUMSnlKanhFTMSbez/cP0aQ56MIU/GkStjyJMxtLGOievXGPJkHP8/M4ZryhjyZFxyucrsNhYZz+HnqEjK5s2b9d577ykiIkLvvPOOOnToYHZIAAAAAAAAAAAgDbJcj4q5c+fqu+++U3R0tDp37qzPP/88Q87j4eGhihUrZsixsxofHx+zQ8gSyJMx5Mk4cmUMeTLGkfJEG/s/jvR7cWTkyRjyZBy5MoY8GeNIeaKN/R9H+r04MvJkHLkyhjwZQ56MI1c5R5YpVERFRWnkyJFauHChLBaLBg4cqN69e2fY+SwWC2Od/X/kwRjyZAx5Mo5cGUOejHGkPNHG/g95MIY8GUOejCNXxpAnYxwpT7Sx/0MejCFPxpErY8iTMeTJOHKVc2SJQkVYWJg++OAD7dixQ7ly5dL333+v5s2bmx0WAAAAAAAAAAB4TA5fqIiOjrYVKby9vTVlyhS6/AAAAAAAAAAAkE04fKFi0qRJ2rFjhzw9PeXn56fy5cubHRIAAAAAAAAAAEgnDl2oCA4O1owZMyRJhQsX1pQpU5Ldtk2bNnrxxRczKzQAAAAAAAAAAJAOHLpQsW/fPoWEhEiS/P395e/vn+y2VatWpVABAAAAAAAAAEAW49CFiqZNm+rUqVNmhwEAAAAAAAAAADKIk9kBAAAAAAAAAACAnItCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZCBQAAAAAAAAAAMA2FCgAAAAAAAAAAYBoKFQAAAAAAAAAAwDQUKgAAAAAAAAAAgGkoVAAAAAAAAAAAANNQqAAAAAAAAAAAAKahUAEAAAAAAAAAAExDoQIAAAAAAAAAAJiGQgUAAAAAAAAAADANhQoAAAAAAAAAAGAaChUAAAAAAAAAAMA0FCoAAAAAAAAAAIBpKFQAAAAAAAAAAADTUKgAAAAAAAAAAACmoVABAAAAAAAAAABMQ6ECAAAAAAAAAACYhkIFAAAAAAAAAAAwDYUKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA07iYHYBRFy5c0MSJE7V//37dvn1bRYsWVYsWLdS7d2/lzp3b7PAAAAAAAAAAAEAaZIkeFUeOHFG7du30+++/q1ChQmrYsKFCQkI0efJkvfXWW7p//77ZIQIAAAAAAAAAgDRw+EJFZGSkBgwYoJCQEI0ePVqLFi3SuHHj9Oeff6px48Y6ffq0fvrpJ7PDBAAAAAAAAAAAaeDwhYrVq1fr6tWrqlevnl5//XXb67ly5dK3334rT09PLVmyRPfu3TMxSgAAAAAAAAAAkBYOX6jYvHmzJOmVV15JtC5//vyqVauWIiMjtWPHjswODQAAAAAAAAAAPCaHL1ScPn1aklSxYsUk15cvX16SdOrUqUyLCQAAAAAAAAAApA8XswNIzc2bNyVJRYoUSXJ9oUKFJEkBAQHpel6r1aro6OgErzk7O0uS3JwzL21uTv87l8XVTdZMOq/F1c3286N5SA15Mi6n5Io8GcdnzxiuKWOM5ikuH5mFNjZrXb/kyThH/pwnJ6fkKe5ccbJCrsiTcY782aON5fpNjSNfv8nJKXmKO1cc/n+WPK4pY8iTcUZyldltLDKexWq1ZtY1liaVKlVSTEyMdu/eLW9v70TrFy1apOHDh6t58+b673//+9jnO3ToULIfAE9Pz8c+flYUEhJi1/bkybicmCvyZByfPWO4poxJKU+enp7KlSuXypQpk6Ex0MYmxvVrDHkyhjwZR66MIU/G0MY6Jq5fY8iTcfz/zBiuKWPIk3HJ5Sqz2lhkHofvUeHs7KyYmJhUt0uvektK50rLH5GciDwZR66MIU/GkCfjyFVCmZUP2tj0Qa6MIU/GkCfjyJUx5Ckh2tishVwZQ56MIU/GkStjyFNC5CP7cfhCRe7cuXX37l2Fh4cnuT4sLExS+lUVXV1dFRkZKScnJ7m7u6fLMQEAcHS5cuXK8HPQxgIAciLaWAAAMkZmtLHIPA5fqChcuLDu3r2rwMBAFStWLNH6uLkpChcunC7ne/bZZ9PlOAAAICHaWAAAMgZtLAAAyOqczA4gNRUrVpQknTlzJsn1Z8+eTbAdAAAAAAAAAADIOhy+UNGwYUNJ0vr16xOtu3Pnjvbu3St3d3fVqVMnkyMDAAAAAAAAAACPy+ELFS+//LJKlCihLVu26Ndff7W9HhYWps8//1whISHq2LGjvL29TYwSAAAAAAAAAACkhcVqtVrNDiI1f/31l3r27KmwsDBVqVJFJUuW1MGDBxUQEKCqVavKz89PuXPnNjtMAAAAAAAAAABgpyxRqJCk06dPa8KECdq3b59CQkJUsmRJtWjRQt26dVOePHnMDg8AAAAAAAAAAKRBlilUAAAAAAAAAACA7Mfh56gAAAAAAAAAAADZF4UKAAAAAAAAAABgGgoVAAAAAAAAAADANBQqAAAAAAAAAACAaShUAAAAAAAAAAAA01CoAAAAAAAAAAAApqFQAQAAAAAAAAAATEOhAgAAAAAAAAAAmIZChYO6cOGCPvnkEzVq1Eg+Pj565ZVXNHbsWD18+NDs0ByCv7+/qlWrpm+++cbQ9g8ePNDLL7+sihUr6sqVKxkcneNILU/jxo1TxYoVk/3Xp0+fTI7YPEauqVOnTmngwIGqX7++qlatqvr162vw4MG6fPlyJkZqruTydOXKlRSvpfj/xo8fb1L0mSe16ykyMlIzZsxQ69at5evrK19fX7Vp00bTpk1TREREJkebM9HOJo821jjaWWNoY42hjTWGNtbx0cYmjzbWONpYY2hjjaGNNY52FmZyMTsAJHbkyBH961//UkhIiHx9ffXss8/qwIEDmjx5sjZt2qT58+crb968Zodpmlu3bqlv374KDQ01vM+IESNyVCMsGcvTsWPHJEmNGjVSnjx5Eq2vXLlyhsXnSIzkas2aNRo0aJAiIyNVpUoV+fr66vjx41qxYoW2bNmiJUuWqFSpUpkYdeZLKU+enp567bXXkt03KChIO3fulMViyfbXVWrXU2RkpHr37q1du3bJ09NTL7zwgqxWqw4cOKAxY8Zo06ZNmj17ttzd3TM58pyDdjZ5tLHG0c4aQxtrDG2sMbSxjo82Nnm0scbRxhpDG2sMbaxxtLMwG4UKBxMZGakBAwYoJCREo0eP1uuvvy5JCgsL08cff6xNmzbpp59+0ogRI8wN1CQnTpzQRx99pIsXLxre57ffftPvv/+egVE5HqN5OnbsmJydnTV27Fh5eHhkUnSOxUiurly5os8++0ySNHbsWLVs2VJS7Of1q6++0uLFizVixAjNmDEjU2I2Q2p58vb21pgxY5JcFx0dra5du0qSPvjgAzVp0iSjwjSdketp0aJF2rVrl8qVK6c5c+aoUKFCkqSbN2+qS5cuOnDggObOnauePXtmVtg5Cu1s8mhjjaOdNYY21hjaWGNoYx0fbWzyaGONo401hjbWGNpY42hn4QgY+snBrF69WlevXlW9evVsX+wkKVeuXPr222/l6empJUuW6N69eyZGmfmCg4P1448/qmPHjrp48aJKlixpaL/Lly9r5MiRqlKlijw9PTM4SvPZk6eAgAAFBgaqXLlyOfKLnT25mjFjhkJCQtSrVy/blztJcnV11ZAhQ1S0aFHduHFD4eHhmRF6pkrrZy++8ePHa9++fapZs6Y++OCDDIjSfPbkafv27ZKkbt262b7YSVKRIkXUvXt3SdK+ffsyNuAcjHY2MdpY42hnjaGNNYY21hja2KyDNjYx2ljjaGONoY01hjbWONpZOBIKFQ5m8+bNkqRXXnkl0br8+fOrVq1aioyM1I4dOzI7NFP5+flp+vTp8vb21qRJk9S2bdtU94mKitInn3yi6OhojRkzRs7OzhkfqMnsyVNcV9mqVatmUnSOxZ5crVmzRi4uLurWrVuidXny5NHWrVu1evXqbNm9MS2fvfjOnTun6dOny8PDQ99++62cnLJns2NPnuL+Ft28eTPRuqCgIElSvnz5MiJMiHY2KbSxxtHOGkMbawxtrDG0sVkHbWxitLHG0cYaQxtrDG2scbSzcCTZ95OWRZ0+fVqSVLFixSTXly9fXlLsZEg5SdGiRTV48GCtW7dOjRs3NrTPhAkTdOjQIQ0ZMkRly5bN4Agdgz15ivty5+XlpeHDh6tp06Z69tln1bRpU40ZM0b379/PjJBNYzRXV65c0Z07d1S2bFl5eXnp4sWLmjx5sj7//HP98MMP+vvvvzMx6syXls9efN98840iIyPVp0+fbD32qT15atCggSRp6tSpWrx4se7cuaN79+5p2bJlmjJlinLlyqXOnTtnRtg5Eu1sYrSxxtHOGkMbawxtrDG0sVkHbWxitLHG0cYaQxtrDG2scbSzcCTMUeFg4qqSRYoUSXJ9XNeqgICATIvJEXTo0MGu7f/++29NmTJFjRo10ltvvZVBUTkee/IU9+Vu9uzZ8vb2VvXq1VW0aFEdPXpU06ZN04YNGzR37lwVLlw4o8I1ldFcxY3PWKRIEU2fPl1jx45VVFSUbf2MGTPUtm1bff3113J1dc2QWM1k72cvvj179mjnzp0qUKCAbWzP7MqePLVv315nzpzRL7/8omHDhmnYsGG2dVWqVNHXX3+dIyZqMwvtbGK0scbRzhpDG2sMbawxtLFZB21sYrSxxtHGGkMbawxtrHG0s3Ak9KhwMKGhoZJix/FMStzrISEhmRZTVnPv3j0NGjRI3t7e+vbbb80Ox2EdP35ckvT2229r69at+vnnnzV37lytXbtWzz//vPz9/TV06FCTozRf3NM4hw8f1pgxY/T2229r/fr1+uuvvzRu3DgVLFhQK1as0E8//WRypI5n+vTpkqQePXrkuLFjU+Lk5KRXXnlFVapUUZ48eVS3bl3VqVNHefLk0YkTJzRr1qxsOU6so6CdfTy0scbRzqaONjbtaGOTRhtrLtrYx0MbaxxtbOpoY9OONjZ5tLPIaPSocDDOzs6KiYlJdTur1ZoJ0WRNw4cP17Vr1zR16lR5e3ubHY7DipvsrkKFCrJYLLbXixQpojFjxqhFixbasWOHzp07p3LlypkYqbniGtl79+7pnXfeSfDEQLNmzVSkSBG99dZb+uWXX9SzZ08VLFjQrFAdytmzZ7V9+3bly5dP77zzjtnhOJTFixfriy++0AsvvKD169erQIECkqTbt29r4MD/196dh1VZ5/8ffx4BQRZzNwVxwRHXFNEaNbWZLNMxl2ayHMuFtDFHU4uxRKu5FLPFZXLJEi2XGg0Vk5wpHXUsl69oA7imIIKACyqCOyLK7w9+5w7kHD0HkAP4elyX11X3fZ/7vO/73IfX51z35/O53yQyMpLs7Gw++eQTB1daMSlni0cZazvl7L0pY4tGGWudMtaxlLHFo4y1nTL23pSxRaOMvTvlrNxvGlFRxnh4eABYvQOZlZUFgLu7e6nVVJ6sWbOGH374gZdeesmYO08s8/T0xN/fv0DDzqxevXrGcL0DBw6UdmllSv7v2tChQwutb9euHa1ateLmzZsVfp5Pe2zYsAGA3r17qxdKPpmZmcyYMQNXV1dmzZplNOwAatasyezZs/Hy8uKHH34gPj7egZVWXMrZolPG2kc5e2/K2KJRxlqmjHU8ZWzRKWPto4y9N2Vs0ShjrVPOSmnQiIoypk6dOmRmZnLu3Dnq1atXaL15Ps+KONdiSZg+fTqQd56Cg4MLrDM3jGfMmEGVKlV48cUX6dChQ6nXWF6Yr78HfWh2/t5MPj4+Frfx8fHh4MGDXLhwobTKKvM2bdoEQN++fR1cSdly4MABrl69SkBAgDFPc341atSgbdu27Nixg0OHDhkPnZSSo5wtOmVsyVLOKmOLShlrmTLW8ZSxRaeMLVnKWGVsUSljrVPOSmnQjYoyxt/fn7i4OOLj43nkkUcKrT927JixnRRmboiYw8WSzZs3A9C5c+cHtoF37NgxlixZQqVKlYxG8Z1Onz4NYPFHxoPE3FMnNzeXtLQ0vL29C21z/vx5gAI9Ch5kKSkpJCQkUL9+fQICAhxdTply6dIlgLs+sM7JyQmAmzdvlkpNDxrlbNEpY22nnLWNMtZ+yljrlLGOp4wtOmWs7ZSxtlHG2k8Ze3fKWSkNmvqpjHniiScAyw2UjIwMoqKicHV1pVOnTqVcWflw9OhRq/+8vLwA2LJlC0ePHuW5555zcLWO4+bmRkREBGvWrCEpKanQ+qSkJGJjY3F3d6djx46lX2AZ4unpafwQiIyMLLT+3LlzHD58GGdnZwIDA0u7vDIpNjYWgPbt2zu2kDLIPEdubGysxZ5Lly9fZt++fQC0aNGiVGt7UChni04ZazvlrG2UsfZTxlqnjHU8ZWzRKWNtp4y1jTLWfsrYu1POSmnQjYoypkePHnh7e7Nt2zZWrVplLM/KymLy5Mlcu3aNgQMH6uFaUiw+Pj7G3Kdvv/12gZA5c+YMr7/+Ordu3WL48OF4eno6qswyY+TIkQB8/vnn7Nixw1h+5coVQkJCuHbtGn369NEDyP4/81ywbdq0cXAlZU/z5s0JDAwkOzubCRMmcPHiRWPdpUuXmDhxIpmZmXTo0IHWrVs7sNKKSzkrpUE5aztlrH2UsdYpYx1PGSulQRlrO2WsfZSxd6ecldKgqZ/KGDc3Nz788ENGjBjBe++9R3h4OD4+PsTExHD27Flat27NhAkTHF2mVAChoaG8/PLLxMTE8PTTTxtDG/fs2UNWVhY9e/Zk9OjRDq6ybOjevTtjx45l3rx5vPLKK7Rt25YaNWqwb98+Lly4QPPmzQkJCXF0mWVGamoqgMV5KwVmz57NkCFD2L17N0888QQdO3bk1q1bHDx4kMzMTBo1asTs2bMdXWaFpZyV0qKctY0y1j7K2LtTxjqWMlZKizLWNspY+yhj7005K/ebblSUQR07dmT16tXMnz+fPXv2cOzYMXx8fBg4cCDDhw/Hw8PD0SVKBVCnTh3Wrl3L4sWL2bRpE7t378bFxYWWLVvy/PPPM2DAAEwmk6PLLDPGjBlDYGAgS5cuJTY2liNHjuDt7c3gwYMJCgrC3d3d0SWWGeZeTeZh6lLQww8/TEREBEuXLmXjxo1ERUUB4Ovry0svvaTeX6VAOSulQTlrO2Ws7ZSxd6eMdTxlrJQGZaztlLG2U8bem3JW7jdTbm5urqOLEBERERERERERERGRB5OeUSEiIiIiIiIiIiIiIg6jGxUiIiIiIiIiIiIiIuIwulEhIiIiIiIiIiIiIiIOoxsVIiIiIiIiIiIiIiLiMLpRISIiIiIiIiIiIiIiDqMbFSIiIiIiIiIiIiIi4jC6USEiIiIiIiIiIiIiIg6jGxUiIiIiIiIiIiIiIuIwulEhIiIiIiIiIiIiIiIOoxsVD5AjR44QGhrKH/7wBzp06ECbNm3o3r07I0aM4KuvviIrK8vRJQLw+9//Hn9/f1avXm3T9hEREfj7+9OtW7f7XJn93n77bfz9/e3+N2/ePKKiooz/z8nJcfShFEtaWhqPPfYYISEhxrJ58+bh7+/PoEGDHFiZYwwdOpSePXty7do1u19rPm/5/0VERBTY5tSpU0yePJlu3brRunVrunbtysSJE0lISCipQzCYv3/+/v4lsr97XfdnzpzhypUrBZaZv2fBwcHFfv/U1FTj/U+cOFFg//n/7dq1q9jvJRWLMrb0KWPzKGMLUsZap4yV8koZW/qUsXmUsQUpY61TxoqUDGdHFyClY+7cuSxcuJDbt2/j6emJr68vLi4unDt3ju3bt7N9+3YWL17MggULaNWqlaPLrTAaNWpE+/btCy2Pi4vjypUr1KxZk4YNGxZaX69evdIor9SEhISQnZ3NG2+84ehSyoTJkyfTv39/PvjgA6ZOnVqkfXh6etKsWTMAatasaSw/fvw4gwYNIjMzEy8vL/z9/UlNTWX9+vX88MMPLFiwgK5du5bIcZSm7OxsFi5cyBdffEFkZCSenp6l9t75v8fR0dGl9r5SfihjHUMZm0cZW5Ay1n7KWCnLlLGOoYzNo4wtSBlrP2WsiH10o+IBsHbtWhYsWIC7uzszZszgqaeewsnJyVifkJBASEgIsbGxvPLKK/z73/+mRo0aDqzYPk899RRt27bFxcXF0aUUMmrUKEaNGlVo+csvv8yePXvo1q0bH3zwgcXXXr9+nX//+98AODuX36/qhg0b2LFjB6+//jq1atVydDllQrNmzXjuuecIDw+nf//+Fn8E2LKPlStXFliWk5PDqFGjyMzMpF+/fkydOhU3Nzeys7P58MMP+eqrr3jjjTfYtGkT1atXL6nDKVGPPPKIxev+7NmzfPrppxZf88YbbzBy5Ei8vLzuS035v8cl1eNGKg5lrOMoY5WxlihjrVPGSnmjjHUcZawy1hJlrHXKWJGSoamfHgCfffYZABMnTuSZZ54p0LgD8PPzY+HChdSsWZOMjAyWL1/uiDKLzMvLCz8/P3x9fR1dSomqUqUKfn5++Pn5ObqUIsvOzmbWrFl4eXkxdOhQR5dTpowaNQqTycSMGTNKbJ+RkZGcOHGC+vXrExoaipubGwCVK1dmypQpdOjQgUuXLrF06dISe8+SVpTrvk6dOvj5+VGnTp37WJmIZcrY8kkZW7EpYy1Txkp5o4wtn5SxFZsy1jJlrEjJ0I2KCu7ixYskJycD0LZtW6vb1ahRgx49egCwf//+UqlNKr7Vq1dz6tQp+vTpU6pDHMsDHx8funbtyv79+/nxxx9LZJ/r1q0DoG/fvlSuXLnAOpPJxAsvvADAv/71rxJ5P5EHnTJWHEkZa50yVqT8U8aKIyljrVPGisj9VH7H4YlN8g85++9//0vLli2tbjt27FiGDBlSYJ7A/A4cOMDy5cvZu3cv58+fx93dHX9/f/r168eAAQMK9XAByMrKYu3atWzevJmjR49y6dIlKleuTP369Xn88ccZPnw4devWtelYLly4wJAhQ4iPj6dZs2YsXbqUmjVrEhERwaRJk6hbty4//fSTsb15WGpYWBh16tRh4cKF7N27l0uXLlG3bl2efPJJRo0aZXF48PXr11m1ahXr16/nxIkTuLi40L59e0aPHs2xY8eYNGkSAwYMsDrctSRERUUxZMgQAA4dOmR8lm+//Tbr1q0jNDSUDh06MH/+fHbv3s3ly5fx8fHh+eefZ9iwYZhMJjZt2sSyZcv45ZdfuH37Ns2bN+e1116je/fuFt9z7969rFixgujoaDIzM6latSrt2rXj5ZdfplOnTnYfw1dffQVAv3797rrdhQsXWLRoEVu2bOH06dM89NBDBAYGMnLkSNq0aWPxNYmJiSxdupRdu3Zx+vRpXF1d8fPzo3fv3rz44otGLwwz83l79tlnmTlzZqH9ma8jb29vtm7daiw3X0eLFi3i4MGDfP3111y9epUGDRrwySef4OfnR1paGmFhYWzfvp2TJ0/i4uJCvXr16Ny5M8OGDcPHx8fiMfTv358ff/yRFStWWP1MbHX79m3jx1lgYKDFbcxDc1NSUjh9+rQxh6w9w0DvPD/WpKam8uSTT1KrVi127NjBmjVrCA8P59ixY0DekN+BAwfy3HPPYTKZjNdZuu7Nn4HZ008/DcDy5ct57LHH7vrZnj17lq+//pqdO3eSnJzM1atX8fDwoEmTJjz99NP8+c9/LnStiNhKGauMVcZS4LwpY5WxylgpKcpYZawylgLnTRmrjFXGyoNANyoqOA8PD9q3b090dDTz5s0jJSWFP/7xj7Rv375Qg6x27drUrl3b4n7CwsKYPXu28RAzf39/MjIy2LNnD3v27GH9+vV8+umnBebWu3DhAkOHDiUuLg6TyYSvry/16tUjLS2N+Ph44uPjiYyMJCIigocffviux5GRkcGwYcOIj4+nZcuWfPHFFzbPTfjTTz+xatUqcnNzadSoER4eHiQnJ7Ns2TK2bdtGREREgV4SGRkZvPrqq+zfvx+TyYSfnx+VKlVi27ZtbN++nW7dutn0vvdbdHQ006dPJycnBz8/P0wmEwkJCXzwwQdcuHABk8nE559/TtWqVWnUqBGJiYnExMTwl7/8hUWLFhU6jpkzZxIWFgbAQw89RLNmzTh79ixbtmxhy5YtjBw5kuDgYJvrO3LkCMePH6d69ep37QV19uxZBgwYwJkzZ/D19aVx48YkJiayceNGtm7dSlhYWKHGZWRkJJMnTyY7Oxs3NzeaNWvG1atX2bdvH/v27WPt2rWEhYXd87qyx2effUZ0dDS+vr54eXlx5coVGjVqRHJyMi+++CLp6em4u7vTuHFjAJKSklixYgXr1q1jxYoVFn9cde7cmUqVKrFz504yMzOpVq1aketLS0sjKysLwOrw8Xr16uHk5MStW7dISkoyGnj2zC1q7W+ENbm5ubz11lusX7+eqlWr0rhxY1JSUoiNjSU2NpbExMR7XlfNmjXj2rVrHDx4EIBWrVrh6up6z7k8Y2NjGTlyJJcuXcLV1RVfX1+cnZ1JTU0lJiaGmJgYtmzZwvLlyy3+QBW5F2WsMlYZWzKUsXmUsSK/UsYqY5WxJUMZm0cZK1I+6EbFA+Cdd95h8ODBXLt2jXXr1rFu3To8PT0JDAykQ4cOPPbYY7Rp04ZKlSzPBLZx40bj7u7o0aN57bXXjOF4u3fv5s0332TPnj1MnDiRhQsXGq/76KOPiIuLo2HDhixatIhGjRoZ67Zv387YsWNJT09n2bJlvPXWW1brv3jxIkFBQRw9epQ2bdrwxRdfULVqVZuPf8WKFTzxxBNMmzbNmPtvy5YtjB07lhMnTrBmzRqGDRtmbB8aGsr+/ftp0KAB8+fPp3nz5kDew9rGjRtn01340hAREUFgYCCffPIJtWvX5vbt20yePJmIiAgWL15sBOuwYcOoVKkSGRkZBAUFcfjwYcLCwgo08FatWkVYWBhVq1blnXfeoW/fvkBeOH///fdMnjyZsLAwGjZsyPPPP29Tfbt27QKgXbt2Vq8tyOux4O3tzerVq3nkkUeAvJ4SI0aMICkpidmzZ7N69Wpj+3379jFp0iRycnIYOHAgb731ltFA/+WXXxg/fjxxcXGMHj2a8PDwEnuAW3R0NMHBwYwcORLI+wHj5OTEnDlzSE9Pp2fPnsyYMQMPDw8Azp8/z5gxY4iJiWHWrFksWbKk0D6rVatG06ZNiYuLY/fu3TzzzDNFri89Pd34b2sPEXRycsLLy4vMzEwyMjKM5Xc+zKwkpaens2HDBiZPnszgwYNxcnLixo0bTJkyhcjISL788kuCgoLu+uDDd955x+jZAjBnzhwaNmx41/e9desWf/vb37h06RI9evTg/fff56GHHgLg5s2bfPnll8yaNYuff/6Z7du388QTT5TYMcuDRRmrjFXGFp8ytuh1KWOlIlPGKmOVscWnjC16XcpYkdKnZ1Q8AFq2bMnq1asLDKO7cuUKP/74I7NmzWLgwIE8/vjjzJkzh+vXrxd6/Zw5cwB44YUXGDduXIE5A3/7298yf/58ALZu3crPP/8M5P0B3bt3LyaTiUmTJhVo3AF07dqV3r17AxAXF2e19suXLzN8+HAOHz5MQEAAS5cutatxB1CzZk3mzp1b4AFFTz75pNHAiY6ONpYnJCSwYcMGTCYTCxYsMBp3kPewts8//7zMDK9zdnZm9uzZRs+ASpUq8eqrrwJ5wyf79etHUFCQ0biqXr26MRTx8OHDxn6ys7OZN28eAO+//77RuIO8+SB79+7N3/72NwDmzZtHTk6OTfVFRUUBeb0I7mXmzJlG4w6gQYMGjBkzBsgbqn3jxg1j3dy5c8nJyeHxxx9n2rRpBXoRtWjRgsWLF+Pm5sahQ4dKdA5Lb29vRowYYfy/uUFy5MgRIG8+TXPjDqBWrVpMnjyZrl270rRpU6v7NZ+f3bt3F6s+cy8UAFdXV6vbmddZ+q7fL3/+858ZMmSI0dvD1dWVkJAQTCYTOTk592U+4SNHjpCZmUnlypUJDQ01GncALi4uvPrqqzRo0AC4+98gkXtRxipjQRlbXMrYolPGSkWmjFXGgjK2uJSxRaeMFSl9ulHxgGjatCn//Oc/+fbbbxkzZgwBAQG4uLgY69PT0/nss8/o27cvZ86cMZYnJSWRmJgIwNChQy3uOyAggICAACCvhwfk/QHdsmUL+/bts3iHNzc3F3d3d6BgMOV35coVgoKCOHToEG3btmXJkiVFepBVp06dLAaen58fkNeINPvPf/4D5M2NaGm+Q29vb+NhbY7m7+9faEiot7e38d+W5oo0N3KvXLliLIuJieH8+fN4eHgYd/rv1LdvXypVqkRaWlqBxuHdpKamAtaHb5rVrl3b4pBN8/nPzc0lMzMTgGvXrhkNR3Nj9U4NGjQwPiPz9VgSAgICCsxBaWbuETFz5kw2b95c4Hpu06YNixcvZtKkSVb3ax5im5KSUqz67tbbxxJLx3K//O53vyu0rHr16kYj+dKlSyX+nq1atWLv3r3s3bvX4vD67Oxso9FXmo1dqZiUscpYUMYWhzK26JSxUtEpY5WxoIwtDmVs0SljRUqfpn56wLRo0YIWLVowduxYrl+/TnR0NDt27GD9+vWkp6eTnJzMuHHj+OabbwA4fvw4AFWqVDEaRJa0bt2amJgYozFo5urqyvnz59m3bx9JSUmkpqZy/PhxfvnlFy5evAjk9Zqw5B//+IcRlunp6UUOJGsPOTP3KMnfsyI+Ph6gQA+UO7Vu3ZoNGzYUqZaSZJ6XMb/8vYQshZql4aPmY7558yaDBw+2+n5OTk7cvn2b48ePF+g1Yo15COe9eg7l7yGUn/kHAPz6IyAlJYWbN28CeZ+DNebP6M7rsTiszWk5btw4oqKiSExM5K9//SuVK1cmICCALl260L1797teS4AxP+WFCxeKVV/+83Xjxg2rvVHMvXry96gaNGiQze9Tu3Zt5s6da1dt9/oO3rp1y6792cPNzY3jx49z+PBhkpOTSUlJ4dixYxw9etQ4F9b+BonYSxn7K2VsHmWsbZSxeZSxItYpY3+ljM2jjLWNMjaPMlakfNCNigdYlSpV6NKlC126dGHcuHGEhITwr3/9i9jYWA4dOkSrVq2MHgv36gFiHip49epVY9m5c+f4+9//ztatWwv8Aa1SpQpt2rTh1q1b/O9//7O6z6ysLB599FESExNJTU3l448/5r333rP7OPP3uLkX83yH+cPyTkXpDXM/VKlS5a7rbe2ZYO6Jk52dXWD4sDW29howb3evIcZ3G955p/w9aO72ACrzZ5T/eiwua3W2aNGCyMhIPv/8c/7zn/+QmZlJVFQUUVFRzJ49m2bNmvHee+/RoUMHi683X2vmHzxFlb9Bn5mZabFhnZOTY3zeNWvWNJbb8rmb5e/tZKt7fQdzc3Pt3qct9u3bx9///vdCvaeqV69O9+7dOXz4sNFjSqSkKWMLU8YqY61RxuZRxorYRhlbmDJWGWuNMjaPMlakfNCNigru3XffZffu3QwYMIDXXnvN6nZubm5MnTqVTZs2cfPmTRITE2nVqpXRcMsfrJaYw9y8/Y0bNxg6dCgJCQlUq1aNQYMG0bp1a/z8/PD19TUe3nS3Bl6XLl349NNP2bZtG+PGjWPlypX07NmT3/72t/aeBpuZG013O96SbDSUBeZjbtWqFRERESW2X1dXV65du1ZgSHJx5Z878/LlywUaKfmZG0v5tzez1pgozrDJBg0aEBoaytSpUzl48CB79uzh//7v/4iKiiIuLo4RI0bw/fffW+w9ZK61uHPG1q1bFy8vLy5fvszJkyctDlU+ffq00esj/3y7R48eLdZ7l0UJCQkMGTKErKwsmjZtyh//+EeaN2+On5+f0TPmxRdfVANPikUZax9lrDK2KJSxZY8yVkqDMtY+ylhlbFEoY8seZaw86PSMigruxo0bnDhxgs2bN99zW09PTyMQzXPuNWnSBMgLv4SEBKuvPXjwIPDrPIebN28mISEBZ2dnvvnmG8aPH0+PHj1o3Lix8SCi/HOIWtKrVy/c3Nx45pln6NGjB7m5uUyePJlr167d81iKyvxAqLsFnvmhUxWFeW7JpKQkqw8Yy83NZffu3SQlJZGdnW3TfmvVqgX82runJPj6+hrDfs3XnCV3Xo+Acd2Zh9ze6ezZs3bXk5ubS2pqKrt27QLyev888sgjjBgxgiVLlvDdd9/h6enJ9evX2bRpk8V9mM+PtcaqPcxDmWNiYiyuNy/39va2Ooy1oli2bBlZWVk0adKENWvWEBQUROfOnQscd1pamgMrlIpAGWsfZawy1h7K2LJLGSulQRlrH2WsMtYeytiySxkrDzrdqKjg+vbtC+QF3r16GezYsYPMzEyqVatG27ZtgbzwNzcAli1bZvF10dHR7N+/H4Bu3boBvz6AysPDo8Adb7Pz58+zbds2wLZ5/d599128vLyMobP3y1NPPQXkBaGlBm16errxoLKKomPHjnh5eXH16lWr18h3333H0KFD6dWr1z0b5mbm68bW7W3h7u5u9ERavny5xW1SUlLYunUr8Ov1CL8OKTXPV5vfrVu3jNfYIzMzk549ezJ8+HAOHDhQaH3jxo2pX78+YH3+SPP5Mf+YKo5evXoBEBERYbEhvmrVKgAGDBhQ7PcqbfmHgNsyxPbkyZNA3sMGLQ0v37lzJ6dOnQLu79yiUrEpY+2jjFXG2kMZW3qUsVIWKWPto4xVxtpDGVt6lLEi9tGNigquS5cu9OzZE4ApU6Ywffr0QkPEbty4wdq1axk/fjwA48ePLzDUcNy4cQB88803zJ07t0BwREVF8frrrwPQtWtXOnfuDPwaVhcvXmTZsmUF/iDHxsYyfPhwMjMzAduGKtatW5eJEycCsHLlSnbv3m3zObBHy5Yt6dGjB7dv32bMmDEcO3bMWHfq1ClGjx59z+HD5Y27uzuvvvoqANOnT2ft2rUFGiObN2825lTt1auXxaGYlrRv3x6w3iuiqMaMGYOzszM7duzgnXfeKfB5HDlyhJEjR3Ljxg2aN29O//79jXWBgYFA3kPXli9fblyTFy9eJCQkhLi4OLtrqV69Ol27dgUgJCSkwI+C27dv8/XXXxMXF0elSpWM7e5kPj/m+oqjb9+++Pr6kpKSQnBwsHFusrOzCQ0N5X//+x9eXl689NJLxX6v0pZ/vl1zw+xuzD8wdu7cyc8//2wsz8nJYcOGDUyYMMFYZn7InYi9lLH2UcYqY+2hjC09ylgpi5Sx9lHGKmPtoYwtPcpYEfvoGRUPgJkzZ+Lu7s63337L8uXLWb58OfXr16dmzZrcuHHDGAbp4uLCm2++yaBBgwq8vlevXiQnJzNnzhwWLFjAsmXLaNy4MRcuXDDu9j766KN8/PHHmEwmAH7/+98TEBBATEwM77//PmFhYdStW5dz586RlpaGyWSic+fO7Nq1i7Nnz5Kbm2u81prnn3+e7777jj179hASEsJ3331nce7G4po2bRonTpwgPj6ePn360LRpU5ycnIiPj8fZ2Rl/f3+OHj1qDMGsCEaOHElKSgrh4eGEhITw8ccf4+PjQ1pamjGUNDAwkOnTp9u8z27dujFnzhwOHDhAdnY2lStXLpFaAwICmD59OlOmTCE8PJzIyEj8/Py4du0aiYmJQN7Q5/nz5xd4z+7du9OhQwd+/vlnpk+fzhdffEH16tU5fvw4N2/eZOzYscybN8/ueqZOncoLL7xAXFwcffr0wcfHBy8vL06dOmUMh50wYQJNmzYt9NozZ85w8uRJnJ2d6dKlSxHPyK9cXV2ZNWsWQUFBbNy4ke3bt9OkSRNSU1PJzMzExcWF+fPnF3hgWXlRrVo1vL29OXnyJH/9619p0qQJ48aNK9DbKL+goCA2bNhARkYGgwcPplGjRnh4eJCamsrFixdxd3c3/kaVZG8pefAoY+2jjFXG2kMZWzqUsVJWKWPto4xVxtpDGVs6lLEi9tGIigdA5cqV+eCDD1i9ejVBQUG0atWK7Oxsjhw5wpkzZ2jcuDGvvPIKkZGRRo+EO/3lL38hPDycPn364OnpyZEjR8jKyqJTp058+OGHLFu2rEBoODk5sWzZMoKDg2nRogXXr18nLi4OZ2dnevfuzddff82nn36Kq6srmZmZREdH3/M4TCYToaGhuLm5cfLkyfs2dLZGjRqEh4cbIZKcnMypU6f43e9+R3h4OO3atQOwOAyvvDKZTEybNo0lS5bw1FNP4ezszC+//MLVq1dp164dU6ZMYenSpXYdc8uWLfnNb37DjRs3iIqKKtF6+/fvz/r16xk4cCC1atUiPj6ejIwM2rdvz7vvvsuaNWto0KBBgddUqlSJJUuWMH78eH7zm9+Qnp7OqVOn6NSpEytXruTZZ58tUi116tRhzZo1vPLKKzRt2pRz584RFxeHq6srf/jDH1i5cqXV79VPP/0EwOOPP14ic3tC3vye69ev509/+hNVq1bl6NGjmEwmevbsyerVq+/rQ/zut08++YSAgABu375NUlISycnJVretX78+kZGRDBo0iEaNGnH69GkSExOpVasWL7/8MpGRkUbvu6ioqPs6Z7BUbMpY+yhjlbH2UMaWHmWslEXKWPsoY5Wx9lDGlh5lrIjtTLm2TJImIobXX3+djRs3MmHCBEaNGuXocsq0devW8fbbb9OzZ0/mzp3r6HLKnD/96U8cOHCAr776io4dO9r0mnnz5jF//nzat2/PypUr73OFcid/f38AvvzyS2OKABEpOcpY2ylj704ZW/4oY0XuL2Ws7ZSxd6eMLX+UsVJeaESFSD47d+7kySefNOYzvdP169fZs2cPkNfTQu7u2WefxdfXl61bt5Kenu7ocsqUI0eOcODAAR599FGbG3ciIuWZMrZkKWOtU8aKyINGGVuylLHWKWNF5H7SjQqRfFq0aEFaWho//PADS5YsIScnx1iXnp5OcHAwGRkZNGnShE6dOjmw0vLB2dmZMWPGcPPmTZYvX+7ocsqUxYsXYzKZrP6YEBGpaJSxJUsZa50yVkQeNMrYkqWMtU4ZKyL3kx6mLZJPjRo1CA4OZsaMGXz00UcsWrQIb29vrl+/TkpKCjdv3uThhx/mH//4By4uLo4ut1zo168f33//PUuXLmXQoEE8/PDDji7J4Q4cOMCGDRsYPHgwHTp0KNI+4uLijAcGjho1iu7du5dkiZLPZ599xo8//ujoMkTKPWVsyVPGFqaMLV+UsSIlQxlb8pSxhSljyxdlrJRHGlEhcodhw4axZs0ann32WapVq8bx48c5f/48TZs2ZezYsXz77bfG/H5im2nTplGlShXmzJnj6FLKhI8++oiGDRsSHBxc5H1cuXKF6OhooqOjNRz5PktKSjLOtYgUjzK25CljC1LGli/KWJGSo4wtecrYgpSx5YsyVsojPUxbREREREREREREREQcRiMqRERERERERERERETEYXSjQkREREREREREREREHEY3KkRERERERERERERExGF0o0JERERERERERERERBxGNypERERERERERERERMRhdKNCREREREREREREREQcRjcqRERERERERERERETEYXSjQkREREREREREREREHEY3KkRERERERERERERExGH+H3SbsT/UdsRLAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH3CAYAAADOlrxeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZzUlEQVR4nOzdd3QUZfv/8c+mJxBK6CSAAamhKQoKShFpNoqIFGlSxQJ+sYCVB0Qs8FgQ6V1AOgJKFymCFOm9BggIBEIJpCf7+4Nf9iGmTTabzCZ5v87hnOzO7My11+5yzc61c98Wq9VqFQAAAAAAAAAAQDZzMTsAAAAAAAAAAACQN9GkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFO4mR0AAABAXrRjxw5169YtU9uoW7euZs+ebXj9IUOGaOnSpZKkrVu3qlixYpna//3ufz6DBw9W37597drOlStXNHfuXG3dulXnz59XZGSkChYsqKpVq+rZZ5/V888/Lzc3cw5hQ0JC1LRp00xtw9/fX7///ruDIoKjhYWFKS4uTsWLFzc7lGyVkJCgV155RXv37tWSJUtUtWpV27LY2FhNnDhRS5Ys0dWrVxUQEKAuXbrolVdekcViSbatypUr2xXDG2+8oTfffFOSdOfOHTVv3lwWi0UrVqyQn5+ffU8MAAAAOQJXUgAAAMAp/Pbbb2rZsqUmTJigQ4cO6fbt24qNjdW1a9e0ZcsWDRkyRB07dtSVK1fMDhW5TEJCgubMmaOWLVvq7NmzZoeT7SZNmqS///5b7du3T9KgsFqtevPNNzV27FhdvHhRsbGxOnv2rD777DN99tlnWRZP/vz5NWjQIF27dk0fffRRlu0HAAAAzoErKQAAAExQvXp1LVu2LMVlhw4dsp2Ya9KkiQYOHJjiej4+PlkVXrbbvn273nnnHcXHx8vT01OdO3fWk08+KV9fX124cEHz5s3Trl27dPDgQfXp00fz58+Xt7d3tsZYvHjxVF+zq1ev2q4eCQoK0siRI1Ncz93dPavCQyYsX75cw4cPNzsMU5w7d07jxo2Tj4+P3nrrrSTLNmzYoI0bN6pMmTJ64403VK5cOR09elQ//PCDfvrpp2RNjfsVK1ZMkydPNhxH0aJFk9x+8cUXNWvWLG3YsEFr1qxRixYtMv7kAAAAkCPQpAAAADBBvnz5Uj25d/v2bdvfhQoVSnW9jPriiy/0xRdfOGRbjmS1WjV8+HBbg2LWrFmqXbu2bXnNmjX1zDPPaNiwYfr55591/PhxzZw5U/3798/WOD08PFJ9LXx9fW1/p/XawjklJCSYHYJpPvvsM8XExKhnz57JhoDbvn27JGnixImqUKGCJOmhhx5SQECA+vTpo7/++ivV93panxcjXF1dNXDgQL3xxhsaNWqUGjZsmO2NSQAAAGQPhnsCAACAqfbu3aszZ85Ikrp27ZqkQZHIYrHogw8+UJEiRSQp1SsaABi3a9cubd68We7u7urevbvZ4STz9NNPKzAwUP/884/mzZtndjgAAADIIjQpAAAAYKrdu3fb/n7qqadSXc/T01N16tSRJJ09e1YxMTFZHhuQm40bN07Svc9dYgPwfo899pgkqV+/flq2bJn27t2ruXPnasiQIZKkxx9/PEvjs1gsat++vSRpypQpfOYBAAByKYZ7AgAAyOG6du2qnTt3qmnTpvr666/1xRdfaO3atYqKilLJkiXVqVMn9ejRQ0OGDNHSpUslSVu3bk02tIskXbhwQQsXLtTOnTt14cIF3bp1Sx4eHvLz81OtWrXUrl07NWjQwKHx16xZU/369dPVq1dVrly5NNe1Wq22v6Ojo+Xh4eHQWLJLbGysli5dqtWrV+v48eO6deuWfH19VaVKFbVo0ULt2rVL8bmFhISoadOmkqQJEyboySef1M8//6xly5bp7NmzslgsKleunF566SW9/PLLslgskqT169dr7ty5OnLkiO7evavSpUurWbNm6tevX5Khqv69j//+979q3ry5ZsyYoeXLl+vChQtycXFRpUqV9Pzzz6tDhw7pzrNx+vRp/fTTT9q+fbuuXLkiq9WqkiVLql69euratasefPDBFB+X+H6tUqWKFi1apO+++07Lli3TrVu3VLx4cbVs2VLvvvuubf3o6Gj98ssv2rRpk44ePaobN24oNjZWBQsWVMWKFdW4cWN16NAhyVwuO3bsULdu3ZLs9/7bx48flySNHTtWP/zwgyRp/vz5KV7tI0nDhw/XnDlzJN2bzyEgIMC2zOjn9H5btmzRkiVLtG/fPl27dk1eXl4qW7asGjVqpFdeeUV+fn5p5j4tp0+ftg3n1LZt2xTXefrpp9WoUSNt2rRJ77//fpJl3bp1U5UqVezev1Ft2rTR6NGjdf36da1atUqtW7fO8n0CAAAge9GkAAAAyCXi4uLUt2/fJFcmBAcHq2DBgoYeP3HiRH3//feKi4tLcn9sbKzu3r2rCxcuaOXKlerUqZOGDRvmsLgfe+wx2y+20xIbG6s9e/ZIujcHxL9PrucU586d02uvvabTp08nuT8sLEzbtm3Ttm3bNHPmTI0bN07ly5dPdTu3b99W586dtX///iT3Hzp0SIcOHdKBAwc0cuRIffjhh1q8eHGSdYKDgzV58mT98ccfmj9/vvLly5fiPiIjI9WtWzdb3hPt3btXe/fu1YoVKzRx4sRU32Pjxo3TuHHjFB8fn+T+s2fP6uzZs1qwYIEGDBigN954w9ZQScn777+vX3/91XY7JCQkyfwEhw8f1oABA3T58uVkj7127ZquXbum7du3a968eZo1a5ZKlCiR6r6ympHPaUREhN577z2tW7cuyWNjYmJsr+/MmTP19ddfp3n1UVoWLVok6d7cEal9/iwWi3744QdNmDBBy5Yt09WrVxUQEKCuXbuqS5cudu03o4oWLapq1arp8OHDWrx4MU0KAACAXIgmBQAAQC6xZcsWJSQk6KmnnlK3bt0UHx+v9evXq2XLluk+dvHixfrvf/8rSSpZsqReeeUVVatWTfny5dOlS5e0ceNGrVy5UgkJCZo3b56aNm2qJ598MqufUrIYr1+/Lkl64oknsnXfjhIaGqouXbooNDRU7u7u6tChgxo1aqTChQsrNDRU69at0/Lly3XmzBl169ZNS5YsUfHixVPc1qhRo3Tjxg3Vr19fnTp1kp+fn/bv36/vv/9eUVFRWrx4sa5du6ZNmzapVq1a6tatm8qUKaNz587pxx9/1NmzZ3Xy5ElNmzZNb775Zor7+PbbbxUaGqoyZcqoX79+qlSpki5evKiZM2dq37592rt3r/r27auff/45WZPh/qsPKleurM6dO6ty5cpKSEjQ4cOHNXv2bJ0/f962TmoxnDhxQseOHdPDDz+sfv36ycvLS3/88YfatWsnSbpx44ZeffVV3bx5U66urmrXrp0aN26sokWL6tatWzp69KhmzJihGzduKDg4WF9++aXtvV69enUtW7ZMGzZs0NixYyXdm0i6evXqGXxljUvvc5qQkKDXXntNf/31lySpSZMmeuGFFxQQEKC7d+/qr7/+0pw5cxQeHq433nhDU6dOtWvYpd9//12S9PDDD6c5IbWHh4feeustvfXWW3Y8W8do0KCBDh8+rN27d+vmzZsqVKiQabEAAADA8WhSAAAA5BIJCQmqU6eOxo0bJxeXe1OPGTmZb7Va9f3330uSChQooJ9++kllypSxLa9du7aeeeYZ1apVSyNGjJAkrV69OlubFOfOndOYMWNst1999dVs27cjffrppwoNDVX+/Pk1ffp01axZM8nypk2bqkWLFnrttdcUGhqqUaNG6ZtvvklxWzdu3FC7du30+eef2xoEjzzyiLy8vDR8+HBJ0qZNm/TUU09p7NixcnO7d+hfq1Yt1a9fX82aNVNERIQ2bNiQaoMgNDRUQUFBmjlzpu3KlVq1aqlFixYaOHCg1q1bp3379mnJkiV68cUXbY87fPiwfvzxR0lS69at9fnnn9v2L0l16tRR+/bt1a9fP+3cuVPjxo1Tq1atUhz6KSEhQWXLltX06dPl5eUlSUl++T9jxgzdvHlTkvTee+8lGzKpUaNGatu2rZ599lmFh4dr/fr1iouLk5ubm/Lly6eqVavq6NGjtvXLli2rqlWrppgPR0jvczpr1ixbg+I///mPOnbsmOTxjz/+uNq3b69OnTopNDRUQ4cO1bp169Iddut+ly9fVnBwsCRl2XONiYlJktfUuLi4qHLlymmukxhjfHy8du3apWbNmjkkRgAAADgHJs4GAADIRV5++WXbiU+jLl68qIIFC8rX11ft2rVL0qC43wsvvGD7+8qVK5mKMyOuX7+ufv366fbt25Kkl156KdnJ/Zzg7Nmztl+v9+/fP9Xn0KRJE9scAatXr0411+7u7nrvvfeSXcHw7ytnPvjggyQNAuneEDqJ+z937lyqMbu6uuq///1vsqG1XF1dNXLkSNswUT///HOS5dOmTVNCQoIKFSqk//znP8n2L0k+Pj62BovVatXs2bNTjaNt27a2BsW/Xb16VcWLF1exYsVSHYKoRIkSqlu3rqR7c1ckNjXMktrnNCEhQTNmzJAkNWzYMFmDIlGZMmU0ePBgSdI///yTbFio9Bw8eND2d8WKFTP0WKNCQ0PVpk2bdP8ZGTbq/hgPHDiQJfECAADAPDQpAAAAcpHUJvRNS0BAgJYvX67du3cnmxz3fr6+vrYTxTExMfaGmCGhoaHq0aOHzp49K0mqVq2aPvroo2zZt6Nt2rTJNvF3epOPN2zYUNK9k9Y7d+5McZ2qVauqcOHCye738/Oz/aq+TJkyqTadihQpIune/AepadCggR544IEUlxUsWND2i/aDBw8qNDRU0r0rc7Zs2SIp/aGEypQpowoVKkiS7eqBlKT1vh41apS2bNmizZs3p3k1QdGiRW1/Z9f7NzWpPZ/jx4/rn3/+kWT8PSLJNgG2UYlXUUhKd7J6Z3B/jGk11QAAAJAzMdwTAABALlKqVKlMPT7x19137tzRhQsXdP78eZ0+fVpHjx7V33//raioKEmynWzPSufPn1evXr10/vx5SVJgYKAmT56c6i/qnd39Q98kXilhxIULF1K839/fP8X7LRaL3N3dFRsbq2LFiqW6XQ8Pj3T3/fDDD6e5vFq1alq2bJmsVquCg4NVrFgxhYSE6NatW5LuzXuQ3lA+iUJCQlJdVrJkyXQfn/jejY2N1aVLl3ThwgUFBwfrxIkT2rt3r06cOGFbNyEhwVBMWSW1z+mRI0dsf48aNUqjRo0ytL3U3iOpSWwoScqyCej9/f1tVw5lloeHh7y8vBQVFaWrV686ZJsAAABwHjQpAAAAcgl3d3dDJ55Tc/r0aU2fPl2bN29OcYihfw8rlJX27t2rAQMGKCwsTNK94V6mTZuW5NfwGXHq1CnFxsamurxs2bK2oYuyyo0bN+x6XOIwV/9mJN6UhlnKiNQm7U7k5+dn+zvxxLe9zzMuLk537txR/vz5ky1L6b77RUZGau7cuVq5cqVOnDihuLi4ZOu4uLiY3pyQ0v6cOvo9kpr7r55JL7fOwtfXV1FRUbp7967ZoQAAAMDBaFIAAADkEplpIixevFiffPJJkpO7hQoVUvny5VWxYkXVqlVLDRo0UKtWrdIcHsgRVq1apffff1/R0dGS7k3UPHHixBSHNjKqb9++unjxYqrLZ82apXr16tm9fSPi4+Ntfy9cuNDwRMf3NwLu5+rq6pC40pLePu5/Tokn3u+/78UXX1TXrl0N7y+1oaHSem9fuHBBvXr1SjIMkLu7uwIDA1W+fHkFBQWpbt26+uWXXzR37lzDsdjDSBMkredyf+4+/fRTPfTQQ4b26+npaWi9lGLIjveRIyTGnJ3NUgAAAGQPmhQAAAB53PHjx20Ninz58unNN99Us2bNFBAQkGS9hIQE23BPWWXOnDkaMWKEbTipxo0b69tvv01zXoOcomDBgra/S5QooRIlSpgYjTGJwzal5v5f/icOLXX/83R1dVXVqlWzJrj/b/DgwbYGxXPPPadXXnlF1atXT9YE+vfk3hlx/4nxtIY6Cw8Pt3sfUtLc+fr6Zlnu7r8KJzIyMkv24WiJcWb1FU8AAADIfjQpAAAA8rj58+fbrqD45JNP1KZNmxTXu3z5cpYOlzN37lwNHz7cdrtDhw4aNmyYQ37p7aix8TOjYsWKtr/379+v5s2bp7ru/v37tWPHDgUEBOjhhx82NCdDVjh27Fiayw8ePCjp3pULiRNglylTRt7e3oqMjNS+ffvS3cekSZNUoEABlS1bVvXr189QfAcPHtT+/fslSfXq1dOYMWNSXffSpUsZ2vb97n8PptWoS5z02l7/fo88//zzqa4bFhamuXPnyt/fX1WrVlWVKlUM7+f+YbxCQ0MVGBhoX8DZJCoqytYAygnNPQAAAGSMi9kBAAAAwFz3D5MTFBSU6nrLly+3/Z3SmP+ZsW3bNo0YMcJ2u3///hoxYkSOGYrGiCeeeML297x589Jc96uvvtKYMWP09ttvZ3hSZEdav3697ty5k+KysLAwbdy4UZL0+OOP2+Y2cHd3tw2ddeLECe3evTvV7W/fvl1jxozRp59+qgkTJmQ4vsRJ1aW037shISHas2eP7fb9wypJ/5t0OzUFChRIsq2UhIWF6cCBA2luJz01atRQoUKFJEkrVqxI88qM2bNna+zYsRoyZIjWr1+fof088MADtr/TGgbNWdwfo7M3VAAAAJBxNCkAAADyuPvneti8eXOK62zatEnjxo2z3Y6JiXHY/sPDw/X+++/brtLo0aOH3n77bYdt31nUqFFDjz76qKR7TZnUTspPmzbNdmK/atWqeuSRR7Itxn+7ffu2Pv3002RX0MTExGjIkCG2+Ul69OiRZPn9t4cOHZriFQbXr1/XJ598YrvdrVu3DMd3/3t3+/btKTbPQkNDNXDgwCQTp//7/Xv/RNYpzblSuXJl29/z589PNgl7XFychg0blubk7EZ4eHioS5cukqSbN2/q3XffTfGz9vfff2vq1KmSJC8vL3Xo0CFD+6lRo4bt76NHj2Yi4uxx/xU9tWrVMjESAAAAZAWGewIAAMjjWrVqpRUrVkiSvvnmG4WGhqpBgwbKnz+/Ll68qDVr1mjdunVJxuJP7df19pg9e7auXr0qSfL399dzzz1n6MRphQoVkpxczgk+++wzvfjii7pz546++eYb7dq1Sy+++KL8/f119epVrVixQmvXrpV074qE4cOHmz5R8MqVK3Xp0iV169ZN/v7+Onv2rGbMmKEjR45Iklq3bq0GDRokeczjjz+uTp06ad68eTp//rxat26tbt26qW7dupKkQ4cOafr06bbXvVmzZnr66aczHFudOnVUrFgxhYaG6ujRo+revbu6dOkif39/3bx5U7t27dKiRYuSzJ0hJZ87InE+Delek6hgwYJKSEhQnTp1ZLFY9NBDD6ls2bI6f/68Dh48qB49eqh79+4qVqyYzpw5ozlz5ujw4cO2dTKjX79++uOPP3T48GFt3LhRrVu3Vvfu3VWlShXdvn1b27dv19y5c20Tyw8ePDjJ8E1GFCtWTBUqVNDp06czffVHdkgc0svNzc3Uph0AAACyBk0KAACAPK5p06Z6+eWXbb8Qnz59uqZPn55svXbt2unWrVvasGGDLl68qMjISIdMaL1gwQLb3xcvXlT79u0NPW7Dhg3JJvd2dg888IB++uknvf7667p48aK2bt2qrVu3JluvYMGCGj16tGrWrGlClP/z9NNP68yZM9qzZ0+S4ZIStW/fXsOGDUvxsR9//LE8PT01c+ZM3bp1S2PHjk1xvebNm+vrr7+2Kz5PT099/fXX6t+/v6KiorR79+4Uh5d64IEH1L59e40ePVqSdOrUKT388MO25TVq1FDJkiV1+fJl7dy5U506dZJ0b7irMmXKyNXVVV9//bV69+6t8PDwFPfTtGlTtWnTRm+++aZdz+X+5zR16lQNGjRIf/31l86cOaNPP/002Xqurq5666237LoCRbqX9/Hjx+vAgQMKDw+Xr69vpuLOSn/++aeke0OmJQ4rBgAAgNyD4Z4AAACg4cOH65tvvlGDBg1UqFAhubq6ysfHR+XLl1ebNm00Z84cjRo1Sk2aNJEkxcbGat26dZneb1hYWKYnG85pqlatqlWrVumTTz5RgwYNVLRoUbm7uytfvnwKCgrS66+/rlWrVqlhw4Zmh6oiRYpo8eLFGjBggB544AF5enqqdOnSat68uWbNmqWRI0fK3d09xce6urpq6NChWrZsmTp27Kjy5cvLx8dH7u7uKlGihFq0aKFJkyZp7Nix8vLysjvGxx9/XEuXLtVLL72kgIAAubu7y93dXcWLF1eDBg00YsQI/fLLL+rUqZOtqbZq1aok2/Dy8tL06dP11FNPqVChQnJ3d7c1LRLVrl1bq1at0quvvqrAwEB5enqqUKFCqlevnkaPHq0ff/wx1VxkVOHChTVz5kyNHz9erVq1UunSpeXp6SlPT0898MADevnll7V06VL179/f7n288MILslgsio+Pd4qJ5VNz7tw5nTp1SpLUpk0bc4MBAABAlrBY779uHwAAAECeFhISoqZNm0qSXn75ZQ0fPtzkiJBVXn/9da1fv14NGzbU5MmTzQ4nRT/88IPGjh2rcuXKadWqVXJ1dTU7JAAAADgYV1IAAAAAQB40YMAASdLWrVsVEhJicjTJxcXFaeHChZLuzdVBgwIAACB3okkBAAAAAHlQUFCQGjdurISEBM2aNcvscJJZs2aNLl++LH9/f7Vu3drscAAAAJBFaFIAAAAAQB713nvvydPTUwsWLNC1a9fMDscmISFBP/74oyRpyJAhcnNzMzkiAAAAZBWaFAAAAACQR1WoUEFvv/22IiMj9cMPP5gdjs0vv/yiU6dO6bnnnlPz5s3NDgcAAABZiCYFAAAAAORh3bt316OPPqoFCxbo2LFjZoejO3fuaMyYMSpWrJg+/vhjs8MBAABAFrNYrVar2UEAAAAAAAAAAIC8hyspAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBRuZgcAwHmEhISoadOmKS6zWCwqWLCgSpUqpYYNG6pHjx7y8/PL5gid188//6xPP/1Un332mV566SWzwwEAmIh6atzly5c1bdo0bdmyRZcuXZIkBQQEqHHjxnr11VdVpEgRkyMEAJiJmmpccHCwJk2apG3btunatWsqWLCgatWqpS5duqhBgwZmhwcAabJYrVar2UEAcA73HwBWqlRJ+fPnty2Lj4/XrVu3FBISori4OBUuXFgzZ85U5cqVzQrXaRw4cEA9evTQ3bt3aVIAAKinBu3evVuvvfaabt++LVdXV5UtW1YJCQkKCQlRfHy8ihUrpilTpqhKlSpmhwoAMAk11ZgtW7bojTfeUFRUlLy9vVWuXDmFhYXp6tWrkqRXX31V77//vslRAkDqaFIAsLn/AHDWrFmqV69esnVu3LihIUOG6I8//tADDzygVatWycUl744ct2PHDr355pu6deuWJNGkAABQTw24ffu2WrRoobCwMD355JP6/PPPVbx4cUnShQsX9N5772nPnj0KCAjQb7/9Jk9PT5MjBgCYgZqavrCwMLVs2VK3bt3Ss88+q//85z/y9fWVJK1YsULvv/++4uPj9f3336tFixYmRwsAKcs7/2sDcIjChQvriy++kIeHh4KDg7V161azQzJFdHS0xo4dq549e9oaFAAAGJXX6+mSJUsUFham4sWL69tvv7U1KCSpTJkyGjdunAoWLKiQkBCtXr3axEgBAM4ur9fURYsW6datW/L399cXX3xha1BI0vPPP2/7Ed3PP/9sVogAkC6aFAAyrHDhwqpYsaIk6eTJkyZHk/3OnTunFi1a6IcffpAkDRo0SP7+/iZHBQDIafJyPd2xY4ckqUmTJkmG7kjk5+enhx56SJJ08ODBbI0NAJDz5OWaGhAQoOeee06dO3eWh4dHsuWJw18lzv0EAM6IibMB2CUuLk6SlC9fvhSXrVy5UqtXr9bhw4d18+ZNubm5qXjx4qpXr5569uypwMDAFB+3dOlSLVy4UGfPnlVCQoKqV6+uPn36yN3dXd26dVPdunU1e/bsdOPbsWOHunXrZvj5tG3bVl988YWhdS9fvqx//vlHtWvX1scff6zq1atr4cKFhvcFAECivFpPX3vtNbVo0SLF+BMljkqbkJBgeP8AgLwrr9bUZ555Rs8880yqyw8dOiRJKleunOF9A0B2o0kBIMPOnz+vkydPysXFRU8++WSSZVFRUerbt6/tF5L+/v6qVKmSrl+/ruDgYAUHB2vFihWaM2eOqlWrZntcdHS0Bg4cqI0bN0q6dwCVL18+7d69W3/99ZeaNWuWoRh9fX318MMPG17/gQceMLxuyZIlNWnSJDVq1ChDMQEAcL+8XE9r1qypmjVrpro8LCxMO3fulCQ9+OCDhvcPAMib8nJNTc3t27c1a9YsLVmyRG5uburTp0+mtgcAWYkmBQBD4uPjdfv2be3du1dffvmlEhIS1L9//2TDHE2ePFk7duxQ4cKFNWnSpCQnIA4cOKABAwYoNDRUEyZM0Pfff29bNm7cOG3cuFGFChXS999/b5sQ7cqVKxo8eLDWrVuXoXirVaumefPmZeIZp65cuXL8CgUAYBfqqTEjR45UZGSkvL29meQTAJAiamrK1qxZo7Fjx+rcuXOKiYlRqVKlNGzYMD366KNZvm8AsBdNCgApSu8y1D59+mjQoEHJ7t+2bZtcXFz0xhtvJPuFZM2aNdWpUyd9//33OnHihO3+27dva/r06ZKkL7/80nbwJ0klSpTQ+PHj1apVK4WGhmbiGQEAkP2opxn3448/auXKlZKkAQMGqEiRIiZHBABwBtRUYw4cOJBkXo5bt25p48aNeuSRR1KcBwoAnAFNCgApqlSpUpIDmISEBN29e9f2a4wZM2YoMjJSH3zwgVxdXW3rzZs3T7GxsbJYLClu19vbW9K9S24Tbdq0STExMSpdurQaN26c7DG+vr5q166dJk6c6KBnBwBA9qCeZswPP/ygsWPHSpKaNm3K0BQAABtqqjFdu3bV66+/rjt37ujPP//UV199pZ9//lmHDh3S/Pnz5ebGqUAAzof/mQCk6KOPPkrya5FEMTExWrp0qUaMGKGffvpJ8fHxGjZsWJJ13N3ddevWLe3bt0/BwcG6cOGCgoODdfToUV27dk1S0kkwE3/lUbly5VTjqV69eobiP3LkiEaMGGF4/UaNGql///4Z2gcAAOmhnhoTFxen4cOHa/78+ZKkJ554Qt98802qJ5QAAHkPNdWYkiVLSpJ8fHzUtm1b1apVS23atNGhQ4e0fPlytWvXLsPbBICsRpMCQIZ4eHjo5ZdfVmhoqMaOHasFCxaoX79+KlWqlCTpzp07GjlypFasWKHY2Fjb49zd3RUUFKSqVatqy5YtSbZ548YNSfcOolKT0ctSw8PDtWfPHsPrM8cEACA7UU//586dO3rrrbf0559/SpKeeeYZffnll/Lw8MjwtgAAeQ81NW3ly5dXs2bNtHLlSu3cuZMmBQCnRJMCgF2aNm2qsWPHKj4+XkeOHLEdAA4YMEA7duyQl5eXXnnlFdWqVUsVK1ZUuXLl5O7urgULFiQ7AEy8vPbOnTup7u/u3bsZiq9evXo6fvx4Bp8VAADZK6/X08uXL6tPnz62ccB79eqld999lysoAAAZlldr6s2bNxUSEqLSpUvLz88vxXUSJxN3xjk0AECiSQHATvefPLBarZKkffv2aceOHZKkiRMn6rHHHkv2uMuXLye7r1KlSpKUZKKyfzt27Fim4gUAwBnl5Xp65coVde3aVefPn5erq6s+/vhjderUyeywAAA5VF6tqe3bt9eFCxf0zjvvpDqX08WLFyXdm/QbAJyRi9kBAMiZNm3aJOnegWDiWJwhISG25SmNzxkZGalff/1VkhQfH2+7v3HjxnJ3d9c///yjrVu3JntcdHS0li1b5sjwAQBwCnm1nsbExOi1117T+fPn5e7uru+++44GBQAgU/JqTW3QoIEkadGiRUmGs0oUEhKi9evXS5KeeuqpbI0NAIyiSQEgQ6xWq9auXasJEyZIklq0aGGbmKt8+fK29caNG5fkAOnUqVPq06ePgoODJd07GExUtGhRde7cWZI0ZMiQJON03rhxQ4MGDUpycAkAQE6X1+vp5MmTdfjwYUnSp59+qmbNmpkcEQAgp8rrNbV3797y8vJScHCwBg8erLCwMNuyI0eOqFevXoqKitKjjz6qpk2bmhgpAKTOYk28Bg5AnhcSEmI7aKlUqVKyicDi4uJ08eJFXb9+XZIUFBSkqVOnqnDhwrZ1Bg0apFWrVkmSChUqpICAANsYmdK9X3kkToz5999/2/YRFRWlPn36aOfOnZKkBx54QPny5dPJkycVFxenatWq6dChQ3r88cc1Y8aMrEuCnZ566ildvHhRn332mV566SWzwwEAmIh6mraYmBg98cQTunXrltzc3FSzZs0012/UqJH69++fTdEBAJwJNdWYjRs36u2331ZkZKQ8PDwUGBio6OhoWwOmdu3aGj9+fKpzVgCA2ZiTAkCKUhp709PTU35+fmrSpImaN2+uF154QW5uSf8bGTNmjOrXr68FCxbo/PnzOn78uAoXLqwmTZqoY8eOaty4sZo0aaJLly7p999/1wsvvCBJ8vLy0rRp0/TTTz9p+fLlCg4OlsVi0SOPPKLXXntNe/fu1aFDh+Tl5ZUtzx8AAEegniZ34sQJ3bp1S9K9k0v3/zo1JeXKlcuOsAAATo6amromTZrol19+0dSpU7V161adOXNGXl5eqlOnjl544QW9+OKLcnd3NztMAEgVV1IAyBG+/PJLTZs2TR06dNCIESPMDgcAgByJegoAgGNQUwHAcZiTAoDpzp49q8aNG6tHjx6KiYlJttxqtWrLli2SpGrVqmV3eAAA5AjUUwAAHIOaCgDZiyYFANOVKVNG0dHR2r59u0aPHq2oqCjbsvDwcA0bNkwnT56Un5+fWrZsaWKkAAA4L+opAACOQU0FgOzFcE8AnMLq1av1f//3f4qPj1e+fPlUtmxZxcfH6/z584qKilKBAgU0duxYPfbYY2aHCgCA06KeAgDgGNRUAMg+NCkAOI0zZ85oxowZ+vvvv/XPP/9IkkqVKqVGjRrplVdeUenSpU2OEAAA50c9BQDAMaipAJA9aFIAAAAAAAAAAABTMCcFAAAAAAAAAAAwhZvZAeR0Z8+eVVRUlLy8vBQYGGh2OAAA5FjUVAAAHIOaCgAAchKaFJkUFRWliIgIs8MAACDHo6YCAOAY1FQAAJCTMNwTAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKZwMzsAAAAAAADMFhcXp1mzZuno0aOqWrWqunXrJjc3vjIDAABkNY64AAAAAABOxYyGwezZszVnzhxJ0p49e2SxWNSzZ88s3SdyFxpdQPbiMwfkHnxyAQAAAABOxYyGwV9//ZXsNk0KZASNLiB78ZkDcg/mpAAAAACAbBIXF6dp06bp3Xff1bRp0xQXF2d2SE4ppYZBVouOjk7zNpAeM963QF7GZw7IPbiSAgAAAACyCb/6NIaGAXIis963DHmDvIpaAeQeVC0AAAAgHZwAgqMwpBCQs+xr1kIJkZGG1o1yd5NcLP+7fe689jzR0NBjXby9VXvdGrtipPkJAMjp+GYFADCEE3QA8jJOAMFR8uovrTNyolcy72Qv8G8JkZFKiIoytK67m48k1//dtiYYfmxm0PxMn9n/ByJ34f0EOB6fIAAOR8E2JqfliRN06ctprykA4zgBhJzO7DqekRO9UuZO9rp4eWU0PDipnHZsVSU2TpdcXZPczg4MeZM+s/8PRO7C+wlwPOet7gByLAq2MTktT5ygS19Oe03zgpx2cgPOixNAyOlyWh0362QvnEtOO7Z6OjpGknTe1VVl4+Ntt5GUGcdnOe3/QDg33k+A4/EtHTkWJ56cFwXbmJyWJ07QpS+nvaZ5QU47uQHkdHn1+Cy7xqx3K1xINVcstyvGnFbHHXWy9+UvlikqxliD4+618CS3Q66Fq/XwRYYe6+XhpvlD2mQ0PKQjpx1buUpqYed7NS9dAWTG8VlO+z8Qzo33E+B4uf8bA3ItTjw5Lwq2MeQp9+E1dT457eQGkNPl1eOzDA1l9K9hjJSBYYwSIrN+bHtnkZmTvfeLiolTdGy8oXWtsia7bfSxyBocW+VOjjo+owmZ+zB/EZB30aRAjmXWiaec9gvBnBYvgIzjc566vDpBLXKPnPZeMuP4LKflyD2d20Zl5OScxAk6ICfJrs+3WZ9tRx2fZagJ6eKa7LazNyFzWn1zhIzOX5SZxj8A55K7/3dDrmbWiaec9gtBR8TLl2DAueW0/5fyAl6T9OXFL972yGnvJTOOz3Jajhw110JGTs5JOfMEHXIfvlcYk+HPN1cBpculcFkl3L2e5Lazy2n1LafJS0OsmXHczbE+Mop3hxPig+zcctrQIY6Ily/BxuT2XzzlVdk1znhmLjfOaf8v5QU57TUx49jDGb548/nOHXJajsyaWDcnnqDLdi5uad/O4xxRK/hekUV476bLJaCOJMkaflUW3+K2284sp9U3OC8zjrud4VgfOQuVywnxQXZuOW1cVDPidYYvwRkdy9Je909gmdN+8ZSd433en6eMNnPs5ahmTnaNM56ZX/LktP+XMsOs921G5bTXxIxjD2f44s3nO3fIaTly1FwLGZUTT9BlN2c4hnVmZtQKXhNjzM5TTjg+s7i4yLXsoxl+nJkcUd+y67uXlLN/TJfbf3BoxnG3MxzrI2ehSeGE+CBnr5xWjLLrADAzJ+ec4UtwhseytHs/mdiHyb94ys7xPu/PU0abOTmJo8YZR+oy+r51/9f71t3O921OqxUZZcaxR047sZxX5YSGdl4dDiajcuIJuuzmDMewzsyMWsFrYozZeTLrewXSl5u/e0mO+/6V035wmFFmHHdzrI+MoknhhPLqB9msL8E57ZLj7DpBl5mDP74EG2P2L57geI4aZ5zxmh2Hsd+NyavHHhmR0yY7NuVqMsmUhnZO+7zBeXEMmzYzagWviTE5LU959Yc9OeEHhzmNo471AZiPJgWcRk759UVOO7FM0XZeZv/iKaPy6peJjHDUOOO5/YR4dmLs9+yT25trNLyMMaNW5MXPGwDkZHn1O2pO+MFhTmPWsb7ZoyKY0fDK7cf6MB9NCuRYZp0wzWknlk0r2khXTvvFU179MpERpo0zzgm6VDH2e/bJ7SffaXgZY0atyIufNwDIyfiOagzfv9KXV79/mdHwyu3H+jAfTYpskpEuZ2aGMXLx9lbtdWvsijGnMatg57QTy2YVbeQ+fJlwXpygcz5m14qcMJyA2V/uMoqGlzFm1AqzP29ATpUTagVyJ76jGsP3L+eV047PTPkRSQ471of5aFJkkwx1OTMxjFFeQsEGshdfJpwXJ+jwbzlhOIGc9uXOLDnt802tAHKOnFArgLyMmuq8ctrxmRnnzzjWR0bRpECORcEGAMAxzPh1VU77cgcAeR1DzwBAzmTG+TOO9ZFRNCkAAADyOK5OBACkh1oBAACyCk0KJ2TWhNAAACBv4upEAEB6qBUAACCr0KRwQmZdRhsXF6dZs2bp6NGjqlq1qrp16yY3N94iAAAAAAAAAICswRloJ2TWZbSzZ8/WnDlzJEl79uyRxWJRz549s2XfAAAAAAAAAIC8x8XsAJBc4mW0fSIi1SI6Rq7pPsIx/vrrrzRvAwAAAAAAAADgSDQpYBMdHZ3mbQAAAAAAAAAAHIkmBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFLmMi5eX2SEAAAAAAAAAAGAITQoAAAAAAAAAAGAKN7MDQNZ5+YtlioqJM7z+3WvhSW6HXAtX6+GLDD3Wy8NN84e0yUh4AAAAAAAAAIA8jiZFLhYVE6fo2HjD61tlTXY7I48HAAAAAAAAACAjGO4JAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0K/I+LW9q3AQAAAAAAAABwIJoUsHEpXDbN2wAAAAAAAAAAOBI/lYeNS0AdSZI1/KosvsVttwEAAAAAAAAAyAo0KWBjcXGRa9lHzQ4DAAAAAAAAAJBHMNwTAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDlmToqwsDBNmjRJGzdu1KVLl+Tl5aWaNWuqb9++qlevXrL1t23bpsmTJ+vYsWOKiopS+fLl1bFjR7Vv314Wi8WEZwAAAAAAAAAAAO6XI66kOH36tF544QVNnz5dsbGxatSokfz9/bV161Z1795d69evT7L+nDlz1LNnT+3atUvVqlVTvXr1dPr0aX300UcaMmSISc8CAAAAAAAAAADcz+mvpIiLi9Pbb7+t0NBQ9ejRQ++9955cXV0lSYsWLdKHH36oIUOGaNu2bfLw8NCZM2f02WefqUCBApo9e7aqVKkiSbp06ZK6d++uZcuWqVGjRnrmmWfMfFoAAAAAAAAAAOR5Tn8lxbp163T8+HE9+uijGjp0qK1BIUnt27fXk08+qQIFCujIkSOSpMmTJyshIUG9evWyNSgkqXTp0vrkk08kSdOmTcveJwEAAAAAAAAAAJJx+ispVq1aJUnq3bt3isunTJmS5PYff/whSWrevHmydevXr68CBQro4MGDunbtmooWLerYYAEAAAAAAAAAgGFO36Q4dOiQJKl27dq6efOmfvvtNx07dkxubm565JFH1KJFC9vVFdeuXVNYWJg8PT0VGBiYbFuurq4qX7689u3bp+PHj9OkAAAAAAAAAADARE7dpIiJidHFixfl6empw4cPa/Dgwbpx44Zt+Zw5cxQUFKQJEyaoePHiunLliiSpWLFislgsKW6zWLFikqTQ0FCHxmq1WhUfH5/s/vuHp8orUspDWsiRMeTJmLyWJ3JkDHkyJrU8ZXcuUqqpvB7GkCdj8lqeyJEx5MkYjvXTl1aOqKnm4POdPnJkDHkyhlqRPt5LxjjLd1RkPaduUty5c0eSlJCQoDfeeEO1atXSO++8o8DAQJ04cUIjR47UwYMHNWDAAC1YsECRkZGSJG9v71S36enpKUm6e/euQ2ONjIzUvn37ktzn4uKihx56yKH7yQkOHDighIQEQ+uSI2PIkzF5MU/kyBjyZExqeapTp062xvHvmsrrYQx5MiYv5okcGUOejOFYP31p5Yiaag4+3+kjR8aQJ2OoFenjvWSMs3xHRdZz6omzY2JiJEmxsbEqW7aspkyZourVqytfvnx66KGHNH36dBUtWlQHDx7Uhg0b5OJi/OlYrdasChsAAAAAAAAAABjg1FdS3H9FRJcuXeTmljRcX19fvfDCC5o2bZq2b9+ul19+WZIUFRWV6jajo6MlST4+Pg6PtXLlyg7dZk5Vs2ZNs0NweuTIGPKUPnJkDHkyxlnyRE29x1leD2dHntJHjowhT8aQp/Q5U46oqfc402virMiRMeTJGPKUPnJkDHnKO5y6SZE/f355eHgoJiZGAQEBKa6TeH9YWJhKlCgh6d4E2qm5evWqJKl48eIOjdVisTAe2v9HHtJHjowhT+kjR8aQJ2OcJU/U1HvIgTHkKX3kyBjyZAx5Sp8z5Yiaeg85SB85MoY8GUOe0keOjCFPeYdTD/fk6uqqihUrSpJtUux/S2xIFClSRIUKFVKJEiUUGRmpCxcuJFs3Pj5eZ86ckSRVqlQpi6IGAAAAAAAAAABGOHWTQpIaN24sSVq+fHmyZVarVZs3b5Yk1a1bN8n6a9euTbb+n3/+qfDwcAUFBTn8SgoAAAAAAAAAAJAxTt+k6NixowoUKKBt27ZpwoQJtgmvrVarvv/+ex06dEjlypVTkyZNJEmdO3eWm5ubxo8frwMHDti2c+nSJY0YMUKS1L9//+x/IgAAAAAAAAAAIAmnnpNCujd3xJgxY/Tmm2/qm2++0ZIlS1SpUiWdOHFC586dU6FChTR69Gh5eHhIkqpUqaK3335bX3/9tTp16qS6devK09NTO3bsUEREhDp27KjmzZub/KwAAAAAAAAAAIDTNykkqWHDhlq+fLkmTJigbdu26Y8//lDRokXVoUMH9evXL9mk2r1791ZgYKBmzJih/fv3y2KxqEKFCurSpYtat25t0rMAAAAAAAAAAAD3yxFNCkkqV66cRo0aZXj9pk2bqmnTplkYEQAAAAAAAAAAyAynn5MCAAAAAAAAAADkTjQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBRujtiI1WpVWFiYrl+/rtu3b8vT01NFixZVqVKlHLF5AAAAAAAAAACQC9ndpLh69arWrFmjP//8U7t27VJERESydby8vPTwww+rUaNGevbZZ1WkSJFMBQsAAAAAAAAAAHKPDDcpTp8+rXHjxmnt2rWKj4+X1WpNdd3IyEj9+eef2rZtm7766iu1adNG/fr1U5kyZTIVNAAAAAAAAAAAyPkMNynCw8M1evRoLVq0SPHx8cqfP78ee+wx1alTR5UqVVJgYKAKFCggb29v3bp1Szdu3NCVK1e0Z88e/f3339q7d68WLVqkZcuWqV27dnrvvfeUP3/+rHxuAAAAAAAAAADAiRlqUvz5558aMmSIQkND9dhjj6ljx45q2rSp3N3dU1zfz89Pfn5+qlChgurXry9JunPnjn755RctXLhQCxYs0NatW/X555/rsccec9yzAQAAAAAAAAAAOYaLkZV69+6t0qVLa86cOZoxY4ZatmyZaoMiNfnz51eXLl20bNkyTZs2Tb6+vnr11VftChoAAAAAAAAAAOR8hq6k+OKLL9S6dWuH7bR+/fpatmyZli5d6rBtAgAAAAAAAACAnMXQlRSObFAkslgsateuncO3CwAAAAAAAAAAcgZDTQoAAAAAAAAAAABHM9SkeOONN/Ttt99mcSgAAAAAAAAAACAvMTQnxfr163Xjxo1Uly9btkxFihTRk08+6bDAAAAAAAAAAABA7uaQ4Z6GDBmiiRMnOmJTAAAAAAAAAAAgj3DYnBRWq9VRmwIAAAAAAAAAAHkAE2cDAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCjejK+7Zs0dVq1ZNcZnFYklzeeI6R44cyXiEAAAAAAAAAAAgVzLcpLBarVkZBwAAAAAAAAAAyGMMNSlGjRqV1XEAAAAAAAAAAIA8xlCTom3btlkdBwAAAAAAAAAAyGOYOBsAAAAAAAAAAJiCJgUAAAAAAAAAADCF4SbFmjVr1LZtW9WpU0ft2rXThg0bsjIuAAAAAAAAAACQyxlqUixevFiDBg2Sp6enBg0aJA8PD73xxhtatmxZFocHAAAAAAAAAAByK0NNigkTJsjX11dTp05V165dNWXKFPn6+mr8+PFZHR8AAAAAAAAAAMilDDUpLl++rICAAOXLl0+SlD9/fgUEBOjSpUtZGhwAAAAAAAAAAMi9DDUpqlatqlOnTun8+fOSpPPnz+vUqVMKCgrK0uAAAAAAAAAAAEDuZahJMWTIELm6uurll1/WW2+9pZdfflmurq4aMmRIVscHAAAAAAAAAAByKUNNiocfflgrVqzQs88+q5iYGL3wwgtauXKlateuncXhAQAAAAAAAACA3MrN6IoBAQH66KOPsjIWAAAAAAAAAACQhxi6kgIAAAAAAAAAAMDRDDUpxo8fr5iYGIfuOCoqSj/88INDtwkAAAAAAAAAAHIOw02KVq1aacWKFZneYVxcnBYuXKhmzZpp8uTJmd4eAAAAAAAAAADImQw1KRYsWCAfHx+99957atmypaZNm6bQ0NAM7Sg4OFhff/21GjVqpE8++UTFihXT4sWL7QoaAAAAAAAAAADkfIYmzq5SpYqWLl2qqVOnauLEifr66681evRoValSRXXq1FGlSpVUtmxZFShQQF5eXgoPD9eNGzd0+fJl7d27V3///bdCQkJktVrl6+urt956S3369JGbm+F5uwEAAAAAAAAAQC5juEvg5uamfv366aWXXtKUKVO0ePFiHTlyREeOHJHFYkn1cVarVZJUsGBBde3aVd27d5evr2/mIwcAAAAAAAAAADlahi9l8PPz03vvvaeBAwdq69at2r59u3bs2KGQkBBFRkba1nN3d1e5cuX08MMPq2HDhmrYsKE8PDwcGjwAAAAAAAAAAMi57B5vydPTU02bNlXTpk1t90VGRur27dvy8PBQwYIF5eJiaMoLAAAAAAAAAACQBzl0Ughvb295e3s7cpMAAAAAAAAAACCX4lIHAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmMJhTYqwsDDt3r1bGzdulCQlJCTo7t27jto8AAAAAAAAAADIZdwyu4Ht27fr22+/1YEDByRJFotFR44c0cWLF9W2bVt16dJFgwYNksViyXSwAAAAAAAAAAAg98jUlRRz5sxRr169tH//flmtVts/Sbp8+bLu3LmjSZMm6f/+7/8cEiwAAAAAAAAAAMg97G5SHDlyRJ9//rlcXFzUu3dvrVixQrVr17Ytr1GjhgYOHChXV1etXr1ay5cvd0S8AAAAAAAAAADY7dixY/rss8/07LPP6pFHHlGNGjXUqFEj9e7dWz/99JOioqLMDjFLVK5cWZUrV9a2bdvMDiUJu5sUU6dOVUJCgoYOHap33nlHFStWlIvL/zbn5eWl1157TZ9++qmsVquWLFnikIABAAAAAAAAALDH999/r7Zt22r27Nm6fPmyypQpo6pVq8rFxUVbtmzRiBEj1LJlSx0+fNjsUPMMu5sUu3btUsGCBdW5c+c012vfvr38/Px09OhRe3cFAAAAAAAAAECmLF68WOPGjZOXl5e+++477dy5U0uXLtWCBQu0ceNG/fbbb6pdu7b++ecf9erVS2FhYWaHnCfY3aQICwtTmTJl0p0Q22KxyN/fX3fv3rV3VwAAAAAAAAAAZMqECRMkSe+9955atmwpV1fXJMsrVKig8ePHq0iRIrpx44ZmzZplRph5jt1NigIFCuiff/4xtO6VK1dUoEABe3cFAAAAAAAAAIDdbt26pfPnz0uSatWqlep6fn5+evrppyVJBw4cyJbY8jo3ex9YvXp1bdmyRdu2bVP9+vVTXW/jxo26evWqGjZsaO+uAAAAAAAAAACwm5vb/06Fb9y4UdWqVUt13TfffFPdunVTkSJFktwfFxenlStXavXq1Tp8+LBu3rwpNzc3FS9eXPXq1VPPnj0VGBiY5DFdu3bVzp07NX36dOXPn1/jx4/Xnj17FB0drcDAQHXv3l1t2rSR1WrVokWLNG/ePJ05c0aurq6qVauW3nrrLdWuXTvJNp966ildvHhRy5Yt05UrVzRhwgQdP35cHh4eqly5srp162ZrtBh17do1TZs2TX/88YcuXrwoFxcXlS9fXs8++6y6dOkiT0/PDG0vI+xuUnTo0EGbN2/WRx99pB9//FFVqlRJts727ds1dOhQWSwWtWvXLlOBAgAAAAAAAABgj3z58unhhx/Wnj17NHbsWF24cEEvvviiHn744WTDPhUrVkzFihVLcl9UVJT69u2rHTt2SJL8/f1VqVIlXb9+XcHBwQoODtaKFSs0Z86cFBsgq1ev1uLFi+Xh4aEHHnhAly5d0pEjR/T+++8rIiJCe/bs0YoVK1SkSBEFBgbq5MmT+vPPP7Vr1y4tXLgwxfPvixcv1uzZs+Xh4aGKFSvq2rVr2rFjh3bs2KGuXbvqo48+MpSbv//+WwMGDNDNmzfl7u6uBx54QFarVYcPH9ahQ4f0yy+/aMqUKcly4ih2D/f09NNP67nnntOlS5fUtm1bPf/88zp58qQkaeDAgXr22Wf16quv6ubNm2rcuLFatmzpsKABAAAAAAAAAMiIjz/+WD4+PrJarVq6dKleeeUV1a1bV3379tWkSZO0f/9+JSQkpPjYyZMna8eOHSpcuLAWLlyo33//XYsXL9Yff/yhhQsXqlixYoqIiLDNe/Fv8+fPV9OmTbV582YtXbpUmzdv1hNPPCFJGjFihNauXauvvvpK27Zt09KlS7VmzRqVKlVKMTExmjlzZorbnD17turXr68//vhDS5Ys0aZNmzRixAi5ublp9uzZWrlyZbo5uXLliq1B0aFDB23btk0rV67Ur7/+qrVr16pWrVo6duyYBg0aZCzJdrC7SSFJX375pfr06SN3d3edPHlS4eHhslqtWrNmjU6fPi0XFxd17NhR3333naPiBQAAAAAAAAAgw6pVq6aFCxeqTp06tvvu3LmjTZs2acyYMerQoYOeeOIJffPNN4qMjEzy2G3btsnFxUVvvPGGatasmWRZzZo11alTJ0nSiRMnUtx3oUKF9MUXX8jX11eS5OnpqZ49e0qSEhIS1Lt3b7Vu3dq2vr+/v9q3by9JOnz4cIrbLF26tH744QfbsFQWi0UdOnRQr169JEk//PBDujmZOnWqbt68qaeeekojRoxIMrd02bJl9eOPPyp//vzavXu3Nm3alO727GH3cE+S5OrqqsGDB6tHjx7avHmzTpw4oTt37sjb21uBgYFq1KiRSpcu7ahYAQAAAAAAAACw24MPPqi5c+fq6NGjWr9+vf78808dOnRIsbGxkqTr169rwoQJ+u233zR79myVLFlSkjRv3jzFxsbKYrGkuF1vb29J94aFSkm9evXk4+OT5D5/f3/b340aNUr2mOLFi0u610hJSYcOHZQvX75k93fs2FETJ07U2bNndebMGZUvXz7Fx0vS+vXrJUkvvPBCisuLFi2qBg0aaM2aNdq4cWOKcWaW3U2Kr776SoGBgWrdurWKFCmitm3bOjIuAAAAAAAAAACyRNWqVVW1alW9+eabioyM1J49e7R161b98ssvun79us6fP6+BAwdq/vz5tse4u7vr1q1b2rdvn4KDg3XhwgUFBwfr6NGjunbtmiSlOlxUYrPjfu7u7ra//fz8ki2/f7LvlPz7io5EpUuXlq+vr8LDwxUcHJxqk+Lu3bu6ePGiJOnHH3/UrFmzUlwvcZ0zZ86kGY+97G5SLFu2TDExMXruueccGQ8AAAAAAAAAANnG29tbDRo0UIMGDTRw4EB98MEH+vXXX7Vv3z4dPnxYQUFBunPnjkaOHKkVK1bYrrqQ7jUagoKCVLVqVW3ZsiXNfaQltSs00lKwYMFUl/n4+Cg8PFy3b99OdZ37r9BIbZiq+4WHh2csQIPsblLcuXNHDz74YLrJBQAAAAAAAADATJ988on++usvtW3bVq+99lqq63l5eWn48OFau3atYmNjdfbsWQUFBWnAgAHasWOHvLy89Morr6hWrVqqWLGiypUrJ3d3dy1YsCDNJkVW+Pe8GfdLbEAkzleRkvvP7a9YsUKVKlVyXHAZYPfE2UFBQTp79qztMhYAAAAAAAAAAJxRdHS0zp07Z5uDIS358+e3zfXg5+enffv2aceOHZKkiRMnasiQIWrVqpUefPBB25BNly9fzrrgU5Ha1Q/nz5/X3bt3Jd2bgyM1BQoUUNGiRSVJp06dSnW948eP6+jRo7p161Ymok2d3U2Kzz77TPnz51eXLl20dOlSnTt3ThEREUpISEj1HwAAAAAAAAAA2S1xYuhDhw5pyZIlaa67detW3bx5U4UKFVKtWrUUEhJiW1a9evVk60dGRurXX3+VJMXHxzsw6rQtWbIkxfPu8+bNkyTVrl1bpUqVSnMbjRs3liT99NNPKW4rPDxc3bp1U5s2bTRz5szMB50Cu5sUH374oby9vXXu3Dl98MEHatmyperUqaOgoKAU/6X04gEAAAAAAAAAkNUaNGigFi1aSJI++ugjjRw5MknzQbp3tcXixYs1aNAgSdKgQYOUL1++JBNPjxs3LsmcFKdOnVKfPn0UHBwsKe0hmBzt0KFD+vjjj237TEhI0E8//aQZM2ZIkt5+++10t9G3b1/5+Pjo77//1rvvvquwsDDbsosXL6pv3766efOmfH191aVLlyx5HnbPSbFv3z7b31ar1RGxAAAAAAAAAACQJUaPHi0fHx8tW7ZMs2bN0qxZs1S6dGkVKVJE0dHRCg4OVkxMjNzd3TV48GB16tRJklStWjW1atVKq1at0rRp07RkyRIFBATo5s2btkZHgwYN9Oeff+ru3bu6c+eO8ufPn+XPp1KlSlq0aJFWrVql8uXL6/LlywoNDZWLi4uGDh2qxx57LN1tlCtXTt9++63efvttrVy5UmvWrNGDDz6o2NhYBQcHKy4uTj4+Ppo0aVKa81tkht1NilmzZjkyDgAAAAAAAAAAsoyHh4e++OILdenSRb/99pt27NihK1eu6NixY/L29lZgYKCeeOIJtW/fPsnVE5I0ZswY1a9fXwsWLND58+d1/PhxFS5cWE2aNFHHjh3VuHFjNWnSRJcuXdLvv/9uG14qK3Xr1k0+Pj6aNm2aTpw4oQIFCqhFixbq1auXatWqZXg7jRo10q+//qoZM2Zoy5YtOnv2rOLj4+Xv768GDRro1VdfVZkyZbLsedjdpKhbt64j48iwt956S2vWrNGoUaPUrl27ZMu3bdumyZMn69ixY4qKilL58uXVsWNHtW/fXhaLxYSIAQAAAAAAAABmq1GjhmrUqJGhx7i6uqpDhw7q0KFDquts3Lgx2X2zZ89Odf2AgAAdP3481eXt2rVL8dz3/Z599lk9++yzaa6TKK19lSpVSkOHDtXQoUMNbcuR7J6TwkwLFy7UmjVrUl0+Z84c9ezZU7t27VK1atVUr149nT59Wh999JGGDBmSjZECAAAAAAAAAIDU2H0lxbJlyzL8mDZt2ti7O5uzZ8/q888/T3X5mTNn9Nlnn6lAgQKaPXu2qlSpIkm6dOmSunfvrmXLlqlRo0Z65plnMh0LAAAAAAAAAACwn91NiiFDhhgeNslqtcpisWS6SRETE6PBgwfLxcVF1apV05EjR5KtM3nyZCUkJKhXr162BoUklS5dWp988ol69+6tadOm0aQAAAAAAAAAAMBkdjcpSpcuneqyyMhIhYeHKy4uThaLRU2bNpWPj4+9u7L55ptvdPjwYX311Vdas2ZNik2KP/74Q5LUvHnzZMvq16+vAgUK6ODBg7p27ZqKFi2a6ZgAAAAAAAAAAIB97G5S/P7772kuj46O1oYNGzRixAiFhoZqzpw59u5K0r2JsKdPn65nn31WrVu3TnFOimvXriksLEyenp4KDAxMttzV1VXly5fXvn37dPz4cZoUAAAAAAAAAIAcJb1z8zmN3U2K9Hh6euqZZ55RgQIF1Lt3b02dOlX9+/e3a1thYWF67733VLJkSQ0bNizV9a5cuSJJKlasWKpDURUrVkySFBoaalcsqbFarYqPj092v6urq0P3kxOklIe0kCNjyJMxeS1P5MgY8mRMannK7lykVFN5PYwhT8bktTyRI2PIkzEc66cvrRxRU83B5zt95MgY8mQMtSJ9vJeMcZbvqMh6WdakSPTEE0+odOnSWrFihd1Nig8++EDXr1/XzJkzVaBAgVTXi4yMlCR5e3unuo6np6ck6e7du3bFkta+9+3bl+Q+FxcXPfTQQw7dT05w4MABJSQkGFqXHBlDnozJi3kiR8aQJ2NSy1OdOnWyNY5/11ReD2PIkzF5MU/kyBjyZAzH+ulLK0fUVHPw+U4fOTKGPBlDrUgf7yVjnOU7KrKeS3bspFChQgoJCbHrsXPmzNHGjRvVq1cv1a1bN811XVyMPx2r1WpXPAAAAAAAAAAAwDGy/EqKq1ev6tSpU8qXL1+GH3vy5El9+eWXCgoK0sCBA9NdP3EfUVFRqa4THR0tSQ6ZyPt+3t7eqly5skO3mVPVrFnT7BCcHjkyhjyljxwZQ56McZY8UVPvcZbXw9mRp/SRI2PIkzHkKX3OlCNq6j3O9Jo4K3JkDHkyhjyljxwZQ57yDrubFBcuXEh1mdVqVUxMjM6cOaOxY8cqNjZWjzzySIb3MXr0aEVHR8vLy0tDhw5Nsuzw4cOSpAULFmjbtm169NFH1aJFC0n3JtBOzdWrVyVJxYsXz3A8abFYLIyH9v+Rh/SRI2PIU/rIkTHkyRhnyRM19R5yYAx5Sh85MoY8GUOe0udMOaKm3kMO0keOjCFPxpCn9JEjY8hT3mF3k6J58+aG1rNarXJzc1OfPn0yvI+IiAhJ0t9//62///47xXX27t2rvXv3ys3NTS+//LJKlCihK1eu6MKFCypTpkySdePj43XmzBlJUqVKlTIcDwAAAAAAAAAAcBy7mxRG5nSwWCwKCgrSoEGD7Lo8Z/bs2akuGzBggDZs2KBRo0apXbt2tvsbN26s+fPna+3aterVq1eSx/z5558KDw9XUFCQw6+kAAAAAAAAAAAAGWN3k2LDhg1pb9jNTYUKFZKnp6e9u7BL586dtXjxYo0fP16PPvqorTly6dIljRgxQpLUv3//bI0JAAAAAAAAAAAkZ3eTwt/f35FxOEyVKlX09ttv6+uvv1anTp1Ut25deXp6aseOHYqIiFDHjh0ND1UFAAAAAAAAAACyjt1Nim7duqly5cr68MMP0133zTff1PHjx7V27Vp7d5chvXv3VmBgoGbMmKH9+/fLYrGoQoUK6tKli1q3bp0tMQAAAAAAAAAAgLTZ3aTYuXOn4uPjDa176tQpXb582d5dpejHH39Mc3nTpk3VtGlTh+4TAAAAAAAAAIDcKDg4WG3atNFLL71k6OIERzHUpDh9+rQmTpyY7P7g4GC99957qT7OarXq0qVLOnv2rIoVK2Z/lAAAAAAAAAAAOMC+Zi2UEBlpdhiGuHh7q/a6NVm+n2vXrmnAgAGKNCEvhpoUFSpUUHBwsA4cOGC7z2Kx6Pr161q+fLmhHbVp08auAAEAAAAAAAAAcJSEyEglREWZHYbTOHr0qAYOHKhz586Zsn/Dwz19/PHHmjt3ru320qVLVbRoUT355JOpPsZiscjHx0fVqlWjSQEAAAAAAAAAgJO4deuWJk2apFmzZikmJkYBAQEKCQnJ9jgMNylq1KihUaNG2W4vXbpU5cqVS3IfAAAAAAAAAABwfrNmzdKUKVNUsmRJffrppzp8+LB++OGHbI/D7omzZ82aJV9fX0fGAgAAAAAAAAAAskHJkiX1/vvvq3PnzvLy8tLhw4dNicPuJkXdunUztH5UVJS8vLzs3R0AAAAAAAAAAHCQl156yewQJGWiSSFJVqtVmzdv1okTJxQVFaWEhIQky+Pj4xUZGakrV65ox44d2rFjR6aCBQAAAAAAAAAAuYfdTYro6Gj17t1bu3fvTnddq9Uqi8Vi764AAAAAAAAAAEAu5GLvA+fOnatdu3bJarUqICBAQUFBslqt8vf3V+3atVWqVClZrVZJ0kMPPaQZM2Y4KmYAAAAAAAAAAJAL2N2kWLNmjSwWi9555x2tW7dOc+fOlaenp6pVq6Z58+bp999/19SpU1WgQAGdOHFCAQEBjowbAAAAAAAAAADkcHY3Kc6ePStfX1/17NlTkuTh4aHKlSsnGf6pQYMG+vjjj3X37l3NnDkz89ECAAAAAAAAAIBcw+4mxd27dxUQECBXV1fbfQ8++KBu3Lihq1ev2u5r1aqVChYsqG3btmUuUgAAAAAAAAAAkKvY3aTIly+fYmNjk9xXpkwZSdLp06dt97m6uiogIECXLl2yd1cAAAAAAAAAACAXcrP3gWXLltXJkycVHh4uX19f231Wq1XHjx/X448/blv3zp07SkhIyHy0AAAAAAAAAABkgou3t9khGJaTYrWX3U2K+vXr6+DBg/rwww81YsQIFSxYUNWqVZMkLV68WJ06dZKnp6f+/vtvnTt3ToGBgQ4LGgAAAAAAAAAAe9Ret8bsEHAfu5sUr7zyiubNm6d169Zp8+bN2rlzpwIDA1W1alUdO3ZM7dq1U4UKFbR161ZZLJYkV1YAAAAAAAAAAADn8eabb+rNN9/M9v3aPSdFsWLFNGnSJAUEBMjT01MeHh6SpGHDhsnT01OnT5/WunXrFBERocKFC2vAgAEOCxoAAAAAAAAAAOR8dl9JIUm1a9fWmjVrdOzYMdt9tWrV0uLFizVr1iyFhISofPnyevXVV1W0aNFMBwsAAAAAAAAAAHIPu5sUM2fOVMWKFVW/fn3bXBSJKlSooP/85z+ZDg4AAAAAAAAAAORedjcppkyZovDwcG3atEkFCxZ0ZEwAAAAAAAAAACAPsHtOips3b6p8+fI0KAAAAAAAAAAAgF3sblKUL19eISEhunv3riPjAQAAAAAAAAAAeYTdTYpPP/1UsbGx6t27t3bu3KmYmBhHxgUAAAAAAAAAAHI5u+ekmDNnjsqVK6d9+/ape/fucnFxka+vr7y8vFJc32KxaOPGjXYHCgAAAAAAAAAAche7mxS//vprktvx8fG6efNmqutbLBZ7dwUAAAAAAAAAAHIhu5sUo0aNcmQcAAAAAAAAAAAgj7G7SdG2bVtHxgEAAAAAAAAAAPIYuyfOBgAAAAAAAAAAyIxMNyliYmL0888/q1+/fmrWrJkee+wxSVJYWJiGDh2qU6dOZTpIAAAAAAAAAACQ+9g93JMknT17Vq+99prOnTsnq9Uq6X8TZF+6dElLly7Vb7/9pjFjxujpp5/OfLQAAAAAAAAAACDXsPtKivDwcPXq1UvBwcEqVaqUevbsqbJly9qW+/r6qnz58oqOjtagQYN04sQJhwQMAAAAAAAAAAAy75dfflHXrl316KOPqnr16mrUqJGGDBmiM2fOZFsMdl9JMWPGDF26dEmNGzfWd999J09PT+3fv18XLlyQJJUrV04rVqzQwIEDtX79ek2fPl2jRo1yWOAAAAAAAAAAAGTUy18sU1RMnNlhGOLl4ab5Q9o4fLtWq1XvvPOOVq5cKXd3d1WvXl1+fn46duyYli5dqtWrV2v8+PF6/PHHHb7vf7O7SbF27Vq5ublp5MiR8vT0THEdV1dXDR8+XJs3b9aOHTvsDhIAAAAAAAAAAEeIiolTdGy82WGYavny5Vq5cqWKFy+uqVOnqlKlSpKk+Ph4ff/995owYYLeeecdrVu3Tj4+Plkai93DPYWEhKhixYoqUqRImuv5+fkpMDBQoaGh9u4KAAAAAAAAAAA4yKJFiyRJgwcPtjUopHsXHgwaNEgVK1bUtWvXtG3btiyPxe4mhcViUVRUlKF1ExIS5OHhYe+uAAAAAAAAAACAgxQoUEAVKlRQnTp1ki2zWCwKDAyUJF29ejXLY7F7uKdy5crp5MmTCg0NVbFixVJd759//tHp06dVpUoVe3cFAAAAAAAAAAAcZNy4cakui4+P1+HDhyVJpUqVyvJY7L6S4umnn1ZcXJyGDx8uq9Wa4joxMTH68MMPZbVa9dRTT9kdJAAAAAAAAAAAyHpz587VxYsXVbhwYT322GNZvj+7r6To3r27Fi9erPXr1+ull17SM888o+vXr0uSNm3apJMnT2rhwoU6d+6cihUrpq5duzosaAAAAAAAAAAA4Fjbt2/XV199JenefBXe3t5Zvk+7mxT58+fX5MmT9dprr+nQoUO2yz8kqX///pIkq9WqYsWKafz48SpYsGDmowUAAAAAAAAAAA63ceNGDRo0SDExMercubNeeumlbNmv3U0KSapQoYJ++eUXLViwQOvXr9fJkyd1584deXt7KzAwUE2aNFGXLl1UoEABR8ULAAAAAAAAAAAcaPbs2Ro1apTi4+PVtWtXffjhh9m270w1KSTJ29tb3bt3V/fu3R0RDwAAAAAAAAAAyAaJ807Pnz9fFotFgwcPVt++fbM1hkw3Ke4XERGh8PBwFS5cWB4eHo7cNAAAAAAAAAAAcJCoqCi9/vrr2rp1q7y8vPTll1+qZcuW2R5HppsUFy9e1OTJk7VhwwZdu3bNdn/ZsmXVsmVL9ezZU4UKFcrsbgAAAAAAAAAAgAPEx8fbGhR+fn6aOHGiatasaUosLpl58G+//aZnn31W8+fPV2hoqKxWq+3fuXPnNGnSJD377LPavXu3o+IFAAAAAAAAAACZMH78eG3dulU+Pj6aNWuWaQ0KKRNXUhw9elTvv/++YmNj9dBDD+nll19WlSpV5OPjo/DwcB09elQ///yzDh06pDfffFPLli1TiRIlHBk7AAAAAAAAAADIgFu3bmnq1KmSpOLFi2vixImprtu6dWs9+eSTWRqP3U2KyZMnKzY2Vh07dtSwYcOSLQ8KCtKLL76oDz74QEuXLtW0adM0dOjQzMQKAAAAAAAAAECmeHk4dKrmLJUVse7cuVMRERGSpODgYAUHB6e6bvXq1Z23SbFnzx4VKFBAH3zwQarrWCwWffzxx1qzZo02btxIkwIAAAAAAAAAYKr5Q9qYHYKpmjVrpuPHj5sdho3dc1LcuHFD5cqVk4eHR5rr+fj4qEKFCrpy5Yq9uwIAAAAAAAAAALmQ3U0Kf39/XbhwQXFxcemue/nyZZUsWdLeXQEAAAAAAAAAgFzI7iZFhw4ddPPmTX377bdprvfzzz8rNDRUbdu2tXdXAAAAAAAAAAAgF7J7TooePXro2LFjmjp1qi5cuKAePXqoRo0acnO7t8nTp09r0aJFmj17tipVqqRmzZrpwoULybZTpkwZ+6MHAAAAAAAAAAA5lt1Nirp169r+Xrt2rdauXSuLxSJvb29FR0crPj7etvzkyZN67rnnkm3DYrHoyJEj9oYAAAAAAAAAAAByMLubFLdv3052n9Vq1d27dw1vw2q12rt7AAAAAAAAAACQw9ndpNiwYYMj4wAAAAAAAAAAAHmM3U0Kf39/R8YBAAAAAAAAAADyGBezAwAAAAAAAAAAAHmT3VdSSFJ0dLRWrVqlI0eO6M6dO2nOMWGxWPT5559nZncAAAAAAAAAACAXsbtJcfXqVXXt2lXnz5+XlPok2BaLRVarlSYFAAAAAAAAAABIwu4mxZgxY3Tu3Dm5urqqTp06Kl68uNzd3R0ZGwAAAAAAAAAAyMXsblJs3bpVFotFU6ZM0eOPP+7ImAAAAAAAAAAAQB5g98TZt2/f1oMPPkiDAgAAAAAAAAAA2MXuJkWpUqUUFRXlyFgAAAAAAAAAAEAeYneTolWrVrp48aIOHz7syHgAAAAAAAAAAEAeYXeTon///ipfvrwGDRqkXbt2OTImAAAAAAAAAACQB9g9cba3t7c+/vhj9ezZU926dZOXl5cKFy4si8WS4voWi0Xr16+3O1AAAAAAAAAAAJC72N2k2Ldvn/r27Sur1Sqr1arIyEhFRkamun5qzQsAAAAAAAAAAJA32d2kGDt2rKKjo1W8eHG1bdtW/v7+cnd3d2RsAAAAAAAAAAAgF7O7SXHw4EF5e3tr4cKFKlGihCNjAgAAAAAAAAAAeYDdE2fHxcUpMDCQBgUAAAAAAAAAALCL3U2KSpUq6cqVK0pISHBkPAAAAAAAAAAAII+wu0nRtWtXXb9+XdOnT3dkPAAAAAAAAAAAII+we06KVq1aae/evRo9erR27typhg0bqlSpUvL29k71MY8//ri9uwMAAAAAAAAAALmM3U2KoKAg29+bN2/W5s2b01zfYrHoyJEj9u4OAAAAAAAAAADkMnY3KaxWa5auDwAAAAAAAAAAcje7mxTHjh1zZBwAAAAAAAAAACCPsXvibAAAAAAAAAAAgMxwWJMiLCxMu3fv1saNGyVJCQkJunv3rqM2DwAAAAAAAAAAchm7h3tKtH37dn377bc6cOCApP9NkH3x4kW1bdtWXbp00aBBg2SxWDIdLAAAAAAAAAAAyD0ydSXFnDlz1KtXL+3fv19Wq9X2T5IuX76sO3fuaNKkSfq///s/hwQLAAAAAAAAAAByD7ubFEeOHNHnn38uFxcX9e7dWytWrFDt2rVty2vUqKGBAwfK1dVVq1ev1vLlyzMV6C+//KKuXbvq0UcfVfXq1dWoUSMNGTJEZ86cSXH93377TR07dlTdunVVp04ddenSRWvWrMlUDAAAAAAAAAAAwHHsblJMnTpVCQkJGjp0qN555x1VrFhRLi7/25yXl5dee+01ffrpp7JarVqyZIld+7FarRo8eLDee+897d27VxUqVFDDhg3l6uqqpUuXql27dtq+fXuSx3z11Vd6++23dfz4cT388MOqVauW9u/fr7feekvfffedvU8ZAAAAAAAAAAA4kN1Nil27dqlgwYLq3Llzmuu1b99efn5+Onr0qF37Wb58uVauXKnixYtryZIl+vnnn/Xjjz9q3bp16t+/vyIjI/XOO+8oIiJCkrRt2zZNnTpV/v7++vXXXzVhwgRNmzZNixYtUuHChfXjjz9q//79dsUCAAAAAAAAAAAcx+4mRVhYmMqUKZPuhNgWi0X+/v66e/euXftZtGiRJGnw4MGqVKmS7X5XV1cNGjRIFStW1LVr17Rt2zZJ0oQJEyRJb7/9tkqXLm1bv0qVKho0aJAkadq0aXbFAgAAAAAAAAAAHMfuJkWBAgX0zz//GFr3ypUrKlCggN37qVChgurUqZNsmcViUWBgoCTp6tWrunPnjnbv3i13d3c99dRTydZv3ry5LBaLNm/erISEBLviAQAAAAAAAAAAjmF3k6J69eq6fv267QqG1GzcuFFXr15V9erV7drPuHHj9Ntvv6lMmTLJlsXHx+vw4cOSpFKlSun06dOKj4+Xv7+/8uXLl2x9Pz8/FS1aVBERETp//rxd8QAAAAAAAAAAAMdws/eBHTp00ObNm/XRRx/pxx9/VJUqVZKts337dg0dOlQWi0Xt2rXLVKApmTt3ri5evKjChQvrscce05YtWyRJJUqUSPUxxYoVU2hoqEJDQ/XAAw84LBar1ar4+Phk97u6ujpsHzlFSnlICzkyhjwZk9fyRI6MIU/GpJan7M5FSjWV18MY8mRMXssTOTKGPBnDsX760soRNdUcfL7TR46MIU/GUCvSx3vJGGf5joqsZ3eT4umnn9Zzzz2nlStXqm3btnrwwQd1+fJlSdLAgQN16tQpnTlzRlarVU2aNFHLli0dFrR0rwHy1VdfSbo3X4W3t7dt8mxvb+9UH+fp6SlJtnUdJTIyUvv27Utyn4uLix566CGH7icnOHDggOHhtMiRMeTJmLyYJ3JkDHkyJrU8pTTkYlb6d03l9TCGPBmTF/NEjowhT8ZwrJ++tHJETTUHn+/0kSNjyJMx1Ir08V4yxlm+oyLrGRruqVu3bho5cmSy+7/88kv16dNH7u7uOnnypMLDw2W1WrVmzRqdPn1aLi4u6tixo7777juHBr1x40b1799fMTEx6ty5s1566SVJGeuiMScFAAAAAAAAAADmMnQlxc6dO1Mdymjw4MHq0aOHNm/erBMnTujOnTvy9vZWYGCgGjVqpNKlSzs04NmzZ2vUqFGKj49X165d9eGHH9qWJc5DERUVlerjo6OjJUk+Pj4Ojcvb21uVK1d26DZzqpo1a5odgtMjR8aQp/SRI2PIkzHOkidq6j3O8no4O/KUPnJkDHkyhjylz5lyRE29x5leE2dFjowhT8aQp/SRI2PIU95h93BP9ytSpIjatm3riE2lKi4uTsOHD9f8+fNlsVg0ePBg9e3bN8k6iXNRhIaGprqdq1evSpKKFy/u0PgsFgvjof1/5CF95MgY8pQ+cmQMeTLGWfJETb2HHBhDntJHjowhT8aQp/Q5U46oqfeQg/SRI2PIkzHkKX3kyBjylHc4pEmR1aKiovT6669r69at8vLy0pdffpniHBcPPvig3NzcdOHCBUVHR9vmn0gUFham69evy9vbW2XLls2u8AEAAAAAAAAAQAoMzUlhpvj4eFuDws/PT7Nnz051Em5PT0899thjiomJ0caNG5MtX7NmjaxWqxo2bEgnDgAAAAAAAAAAkzl9k2L8+PHaunWrfHx8NGvWrHTHIuvWrZsk6YsvvtC5c+ds9x87dsw2gfe/h4kCAAAAAAAAAADZz/BwT4cOHVLTpk3t3pHFYtH69esz9Jhbt25p6tSpku7NITFx4sRU123durWefPJJNWrUSJ07d9bcuXP1/PPP67HHHlN8fLx27Nih2NhYDR48WNWrV7f7eQAAAAAAAAAAAMcw3KSIiYnRxYsX7d6RxWLJ8GN27typiIgISVJwcLCCg4NTXbd69ep68sknJUmffPKJqlevrnnz5mnnzp3y9PRU7dq11bNnz0w1WgAAAAAAAAAAgOMYblKUKlVK7dq1y8pYkmnWrJmOHz+e4cdZLBa9+OKLevHFF7MgKgAAAAAAAAAA4AgZalK88cYbWRkLAAAAAAAAAADIQ5x+4mwAAAAAAAAAAJA70aQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYwtDE2aNGjVKRIkWyOhYAAAAAAAAAAJCHGGpStG3bNqvjAAAAAAAAAAAAeQzDPQEAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCloUgAAAAAAAAAAAFPQpAAAAAAAAAAAAKagSQEAAAAAAAAAAExBkwIAAAAAAAAAAJiCJgUAAAAAAAAAADAFTQoAAAAAAAAAAGAKmhQAAAAAAAAAAMAUNCkAAAAAAAAAAIApaFIAAAAAAAAAAABT0KQAAAAAAAAAAACmoEkBAAAAAAAAAABMQZMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJAQAAAAAAAAAATEGTAgAAAAAAAAAAmIImBQAAAAAAAAAAMAVNCgAAAAAAAAAAYAqaFAAAAAAAAAAAwBQ0KQAAAAAAAAAAgCnczA4gq5w9e1bjxo3T33//revXr6tkyZJq1aqV+vbtq3z58pkdHgAAAAAAAAAAeV6uvJLiwIEDateunVasWKFixYqpcePGioiI0IQJE9SxY0eFh4ebHSIAAAAAAAAAAHlermtSxMbGatCgQYqIiNAXX3yhBQsW6Pvvv9f69ev11FNP6cSJExozZozZYQIAAAAAAAAAkOfluibFr7/+qosXL6pBgwZq27at7X4vLy99/vnn8vHx0aJFi3T79m0TowQAAAAAAAAAALmuSbFx40ZJUvPmzZMtK1y4sOrVq6fY2Fht3bo1u0MDAAAAAAAAAAD3yXVNihMnTkiSKleunOLyihUrSpKOHz+ebTEBAAAAAAAAAIDk3MwOwNGuXLkiSSpRokSKy4sVKyZJunr1qkP3a7VaFR8fn+x+V1dXSZKLt7dD95caF28v299eHtn38t6/r5TykJbsztG9fWV/njKTI4n3klF5IU85LUf39kWe0uPMn7nEXGSXlGoq71tjeN8akxfylNNydG9f5Ck9OfEzx3spqbxYU3Pi+1bKG3nKaTm6ty/ylJ6c+JnjvWQM76X/ye56iqxnsVqtVrODcKSqVasqISFB27dvl5+fX7LlCxYs0Mcff6yWLVvqu+++y/T+9u3bl+Z/LD4+PpneR04TERGRofXJkTHkyZi8lidyZAx5Mia1PPn4+MjLy0uBgYFZuv+0aiqvhzHkyZi8lidyZAx5MoZj/fSllSNqqjn4fKePHBlDnoyhVqSP95IxZn9HRfbJdVdSuLq6KiEhId31HNWbSW9f9vynk9eQI2PIkzHkKX3kyBjy9D/ZlYu0aiqvhzHkyRjylD5yZAx5Sh85SoqamnOQp/SRI2PIU/rIkTHk6X/IRe6T65oU+fLl082bNxUdHZ3i8qioKEmO6z66u7srNjZWLi4u8vT0dMg2AQBwNl5eXumvlEnUVABAXkBNBQAg87KjniL75LomRfHixXXz5k2FhoaqVKlSyZYnzkVRvHhxh+yvRo0aDtkOAAB5HTUVAADHoKYCAICcxMXsABytcuXKkqSTJ0+muPzUqVNJ1gMAAAAAAAAAAObIdU2Kxo0bS5LWrl2bbNmNGze0Y8cOeXp66vHHH8/myAAAAAAAAAAAwP1yXZPi6aeflr+/v/744w/9/PPPtvujoqL04YcfKiIiQh06dJCfn5+JUQIAAAAAAAAAAIvVarWaHYSj7dq1S71791ZUVJSCgoIUEBCgvXv36urVq6pevbpmzZqlfPnymR0mAAAAAAAAAAB5Wq5sUkjSiRMn9MMPP2jnzp2KiIhQQECAWrVqpZ49eyp//vxmhwcAAAAAAAAAQJ6Xa5sUAAAAAAAAAADAueW6OSkAAAAAAAAAAEDOQJMCAAAAAAAAAACYgiYFAAAAAAAAAAAwBU0KAAAAAAAAAABgCpoUAAAAAAAAAADAFDQpAAAAAAAAAACAKWhSAAAAAAAAAAAAU9CkAAAAAAAAAAAApqBJkYucPXtW77zzjpo0aaKaNWuqefPm+uabb3T37l2zQzNdcHCwateurZEjRxpa/86dO3r66adVuXJlhYSEZHF0ziG9HH3//feqXLlyqv/69euXzRGbw8h76fjx4xo8eLCeeOIJVa9eXU888YTef/99XbhwIRsjNU9qOQoJCUnzPXT/v7Fjx5oUffZJ770UGxurqVOn6oUXXlCtWrVUq1YttW7dWpMnT1ZMTEw2R5u3UE9TRz01hpqaPuqpMdRUY6ipzouamjpqavqop8ZQU42hpqaPegozuZkdABzjwIED6t69uyIiIlSrVi3VqFFDe/bs0YQJE/T7779r7ty58vX1NTtMU1y7dk0DBgxQZGSk4ccMGzYsTxVrIzk6fPiwJKlJkybKnz9/suXVqlXLsvichZE8rVq1Su+++65iY2MVFBSkWrVq6ciRI1q2bJn++OMPLVq0SGXKlMnGqLNXWjny8fHR888/n+pjw8LC9Oeff8piseT691N676XY2Fj17dtX27Ztk4+Pjx599FFZrVbt2bNHo0eP1u+//64ZM2bI09MzmyPP/ainqaOeGkNNTR/11BhqqjHUVOdFTU0dNTV91FNjqKnGUFPTRz2F2WhS5AKxsbEaNGiQIiIi9MUXX6ht27aSpKioKL399tv6/fffNWbMGA0bNszcQE1w9OhRDRw4UOfOnTP8mF9++UUrVqzIwqici9EcHT58WK6urvrmm2/k7e2dTdE5DyN5CgkJ0QcffCBJ+uabb/TMM89IuvcZ/c9//qOFCxdq2LBhmjp1arbEnN3Sy5Gfn59Gjx6d4rL4+Hj16NFDkvT666+radOmWRWm6Yy8lxYsWKBt27apQoUKmjlzpooVKyZJunLlirp166Y9e/Zo9uzZ6t27d3aFnSdQT1NHPTWGmpo+6qkx1FRjqKnOi5qaOmpq+qinxlBTjaGmpo96CmfAcE+5wK+//qqLFy+qQYMGtoM/SfLy8tLnn38uHx8fLVq0SLdv3zYxyux169Ytff311+rQoYPOnTungIAAQ4+7cOGChg8frqCgIPn4+GRxlObKSI6uXr2q0NBQVahQIc8d/GUkT1OnTlVERIT69OljO/iTJHd3dw0ZMkQlS5bU5cuXFR0dnR2hZxt7P2/3Gzt2rHbu3Km6devq9ddfz4IozZeRPG3ZskWS1LNnT9vBnySVKFFCr776qiRp586dWRtwHkQ9TY56agw1NX3UU2OoqcZQU50fNTU5amr6qKfGUFONoaamj3oKZ0KTIhfYuHGjJKl58+bJlhUuXFj16tVTbGystm7dmt2hmWbWrFmaMmWK/Pz8NH78eLVp0ybdx8TFxemdd95RfHy8Ro8eLVdX16wP1EQZyVHiZbTVq1fPpuicR0bytGrVKrm5ualnz57JluXPn1+bNm3Sr7/+musuf7Tn83a/06dPa8qUKfL29tbnn38uF5fcWZoykqfE/3+uXLmSbFlYWJgkqVChQlkRZp5GPU2OemoMNTV91FNjqKnGUFOdHzU1OWpq+qinxlBTjaGmpo96CmeS+z5hedCJEyckSZUrV05xecWKFSXdmygpryhZsqTef/99rVmzRk899ZShx/zwww/at2+fhgwZovLly2dxhObLSI4SDwALFCigjz/+WM2aNVONGjXUrFkzjR49WuHh4dkRsimM5ikkJEQ3btxQ+fLlVaBAAZ07d04TJkzQhx9+qK+++kq7d+/Oxqizlz2ft/uNHDlSsbGx6tevX64eCzUjeWrUqJEkadKkSVq4cKFu3Lih27dva8mSJZo4caK8vLzUtWvX7Ag7T6GeJkc9NYaamj7qqTHUVGOoqc6PmpocNTV91FNjqKnGUFPTRz2FM2FOilwgsYtZokSJFJcnXoZ19erVbIvJbC+99FKG1t+9e7cmTpyoJk2aqGPHjlkUlXPJSI4SDwBnzJghPz8/PfTQQypZsqQOHTqkyZMna926dZo9e7aKFy+eVeGaxmieEsduLFGihKZMmaJvvvlGcXFxtuVTp05VmzZt9Nlnn8nd3T1LYjVLRj9v9/vrr7/0559/qkiRIraxPnOrjOSpffv2OnnypH766Sd99NFH+uijj2zLgoKC9Nlnn+XqSdvMQj1NjnpqDDU1fdRTY6ipxlBTnR81NTlqavqop8ZQU42hpqaPegpnwpUUuUBkZKSke+N7piTx/oiIiGyLKSe5ffu23n33Xfn5+enzzz83OxyndOTIEUlSp06dtGnTJv3444+aPXu2Vq9erUceeUTBwcEaOnSoyVGaK/GXOvv379fo0aPVqVMnrV27Vrt27dL333+vokWLatmyZRozZozJkTqXKVOmSJJ69eqV58aSTYuLi4uaN2+uoKAg5c+fX/Xr19fjjz+u/Pnz6+jRo5o+fXquHDfWbNTTzKGeGkNNTRv11H7U1JRRU81BTc0camr6qKfpo6baj5qaHPUUWY0rKXIBV1dXJSQkpLue1WrNhmhyno8//liXLl3SpEmT5OfnZ3Y4Tilx4rtKlSrJYrHY7i9RooRGjx6tVq1aaevWrTp9+rQqVKhgYqTmSSzGt2/fVufOnZP8qqBFixYqUaKEOnbsqJ9++km9e/dW0aJFzQrVaZw6dUpbtmxRoUKF1LlzZ7PDcSoLFy7UJ598okcffVRr165VkSJFJEnXr1/X4MGDtXz5csXExOi7774zOdLchXqaOdRTY6ipaaOe2oeamjpqqjmoqZlDTU0f9TR91FT7UFNTRj1FVuNKilwgX758kpRqxzIqKkqS5OPjk20x5RSLFi3S6tWr9corr9jG10Ny+fPnV+XKlZMc/CUqVaqU7ZK+gwcPZndoTuP+z1f37t2TLa9du7aCgoIUGxub68f+NGrlypWSpGeeeYZfp9zn5s2bGjVqlDw9PTVmzBjbwZ8kFSlSRP/973/l6+ur1atX6+TJkyZGmvtQT+1HPTWOmpo26ql9qKkpo6aah5pqP2qqMdTT9FFT7UNNTY56iuzAlRS5QPHixXXz5k2FhoaqVKlSyZYnjvOZG8dizKyRI0dKupejd955J8myxAPnUaNGydvbWx07dtQjjzyS7THmBInvu7x8ufb9v3AKCAhIcZ2AgAAdOnRIYWFh2RWWU1u7dq0k6YUXXjA5Eudy8OBB3b17Vw899JBtvOb7+fn5qVatWtq6dasOHz5sm3gSmUc9tR/11HHyek2lntqHmpoyaqp5qKn2o6Y6Rl6vpxI11V7U1OSop8gONClygcqVK+vEiRM6efKkatasmWz5qVOnbOshqcQDlsQilJL169dLkurXr58nDwBPnTqlqVOnysXFxXbA/G///POPJKX4BSSvSPwVj9Vq1ZUrV+Tv759snWvXrklSkl8d5FUXLlzQ6dOnVbp0aT300ENmh+NUbt++LUlpTl7n6uoqSYqNjc2WmPIK6qn9qKfGUFPTRz3NOGpq6qip5qGm2o+amj7qqTHU1IyjpqaMeorswHBPuUDjxo0lpXwQc+PGDe3YsUOenp56/PHHszky53f8+PFU//n6+kqSNmzYoOPHj6tdu3YmR2sOLy8vLVmyRIsWLVJwcHCy5cHBwdq3b598fHz06KOPZn+ATiJ//vy2LwjLly9Ptjw0NFRHjhyRm5ub6tSpk93hOZ19+/ZJkh5++GFzA3FCiWPm7tu3L8VfNIWHh2v//v2SpKpVq2ZrbLkd9dR+1FNjqKnpo55mHDU1ddRU81BT7UdNTR/11BhqasZRU1NGPUV2oEmRCzz99NPy9/fXH3/8oZ9//tl2f1RUlD788ENFRESoQ4cOTLgFuwQEBNjGQh0yZEiSgnT58mW99dZbio+PV8+ePZU/f36zwnQKffr0kSRNnDhRW7dutd1/584dffDBB4qIiND/a+/Oo2O6Gz+Ov4dEIkTtW4glKtYSdEHRhSpVSxetai2xVJWiVa3Q5RDVxdLaK7QSPNogKtWF4qGWXxKa2KoRSyKJJSoSao2Q3x85c5thhky2STyf1znOae/cufd779zJ5zvnu3Xr1k0LkvHv3LBNmzZ1cEkKnwYNGtCyZUvS0tIYM2YM58+fN167cOEC48aNIzU1lVatWtGkSRMHlvTeozyV/KZMzR7lqX2UqbYpUx1HmSr5SXmafcpU+yhTrVOeSkHQdE/3AFdXVz777DMGDx7MRx99RHBwMDVq1CAqKoozZ87QpEkTxowZ4+hiShHm7+/Pa6+9RlRUFE899ZQx7DEiIoKrV6/SuXNnhg8f7uBSOl6HDh0YOXIks2fPZtCgQTRr1ozy5cuzd+9ezp07R4MGDfDz83N0MQuFxMREAKvzWQrMmDGDfv36ERYWxmOPPcaDDz7IjRs3OHDgAKmpqdSuXZsZM2Y4upj3HOWpFARl6t0pT+2jTL0zZapjKFMlvylPs0eZah9lqm3KU8lvaqS4Rzz44IOsXLmSOXPmEBERwZEjR6hRowa9e/dm4MCBlCpVytFFlCKscuXKrF69mkWLFrFhwwbCwsJwdnamUaNGvPjii/Tq1QuTyeToYhYKI0aMoGXLlixZsoQ9e/YQHR2Nh4cHffv2xdfXFzc3N0cXsVAw93YyD1kXS1WrViUkJIQlS5awfv16wsPDAfD09OTVV19Vr7B8pDyV/KZMzR7lafYpU+9Mmeo4ylTJT8rT7FOmZp8y1TblqeQ3U0ZGRoajCyEiIiIiIiIiIiIiIv97tCaFiIiIiIiIiIiIiIg4hBopRERERERERERERETEIdRIISIiIiIiIiIiIiIiDqFGChERERERERERERERcQg1UoiIiIiIiIiIiIiIiEOokUJERERERERERERERBxCjRQiIiIiIiIiIiIiIuIQaqQQERERERERERERERGHUCOFiIiIiIiIiIiIiIg4hBop5DbR0dH4+/vzzDPP0KpVK5o2bUqHDh0YPHgwy5Yt4+rVq44uIgBPPPEE3t7erFy5Mlv7h4SE4O3tTfv27fO5ZPZ7//338fb2tvvf7NmzCQ8PN/4/PT3d0ZeSK0lJSTz88MP4+fkZ22bPno23tzd9+vRxYMkco3///nTu3JnLly/b/V7zfcv6LyQkxGKfkydPMmHCBNq3b0+TJk1o164d48aN4+jRo3l1CQbz98/b2ztPjne35/706dNcvHjRYpv5ezZ27Nhcnz8xMdE4//Hjxy2On/Xfzp07c30uKdqUqQVPmZpJmWpJmWqbMlWKAuVpwVOeZlKeWlKe2qY8FckdJ0cXQAqXWbNmMX/+fG7evEnp0qXx9PTE2dmZv//+m23btrFt2zYWLVrE3Llzady4saOLe8+oXbs2LVq0uG17TEwMFy9epEKFCtSqVeu216tVq1YQxSswfn5+pKWl8fbbbzu6KIXChAkT6NmzJ59++imTJk3K0TFKly5N/fr1AahQoYKx/dixY/Tp04fU1FTc3d3x9vYmMTGRtWvX8uuvvzJ37lzatWuXJ9dRkNLS0pg/fz7ffPMNoaGhlC5dusDOnfV7HBkZWWDnlcJLmeoYytRMylRLylT7KVOlsFCeOobyNJPy1JLy1H7KU5HsUSOFGFavXs3cuXNxc3Nj6tSpdOrUieLFixuvHz16FD8/P/bs2cOgQYP4+eefKV++vANLbJ9OnTrRrFkznJ2dHV2U2wwbNoxhw4bdtv21114jIiKC9u3b8+mnn1p975UrV/j5558BcHIqul/pdevWsX37dt566y0qVqzo6OIUCvXr1+e5554jODiYnj17Wv2RkJ1jrFixwmJbeno6w4YNIzU1lR49ejBp0iRcXV1JS0vjs88+Y9myZbz99tts2LCBcuXK5dXl5KkHHnjA6nN/5swZ5s2bZ/U9b7/9NkOGDMHd3T1fypT1e5xXvXGk6FKmOo4yVZlqjTLVNmWqFGbKU8dRnipPrVGe2qY8FckdTfckhgULFgAwbtw4nn76aYvKH4CXlxfz58+nQoUKpKSkEBQU5Ihi5pi7uzteXl54eno6uih5qmTJknh5eeHl5eXoouRYWloa06dPx93dnf79+zu6OIXKsGHDMJlMTJ06Nc+OGRoayvHjx6levTr+/v64uroCUKJECSZOnEirVq24cOECS5YsybNz5rWcPPeVK1fGy8uLypUr52PJRDIpU4smZeq9TZlqnTJVCjPladGkPL23KU+tU56K5I4aKQSA8+fPEx8fD0CzZs1s7le+fHk6duwIwL59+wqkbHLvW7lyJSdPnqRbt24FOvSxKKhRowbt2rVj3759bN26NU+OuWbNGgC6d+9OiRIlLF4zmUy89NJLAPz00095cj6R/zXKVHEkZaptylSRokV5Ko6kPLVNeSoi+aHojruTPJV1KNp///tfGjVqZHPfkSNH0q9fP4u5A7Pav38/QUFB7Nq1i7Nnz+Lm5oa3tzc9evSgV69et/V+Abh69SqrV69m48aNHDp0iAsXLlCiRAmqV6/Oo48+ysCBA6lSpUq2ruXcuXP069ePw4cPU79+fZYsWUKFChUICQlh/PjxVKlShd9//93Y3zxcNSAggMqVKzN//nx27drFhQsXqFKlCk8++STDhg2zOmz4ypUrfPfdd6xdu5bjx4/j7OxMixYtGD58OEeOHGH8+PH06tXL5jDYvBAeHk6/fv0A+PPPP43P8v3332fNmjX4+/vTqlUr5syZQ1hYGP/88w81atTgxRdfZMCAAZhMJjZs2EBgYCB//fUXN2/epEGDBrzxxht06NDB6jl37drF0qVLiYyMJDU1lTJlytC8eXNee+01Wrdubfc1LFu2DIAePXrccb9z586xcOFCNm3axKlTp7jvvvto2bIlQ4YMoWnTplbfExsby5IlS9i5cyenTp3CxcUFLy8vunbtyssvv2z00DAz37dnn32WadOm3XY883Pk4eHB5s2bje3m52jhwoUcOHCA5cuXc+nSJWrWrMlXX32Fl5cXSUlJBAQEsG3bNk6cOIGzszPVqlWjTZs2DBgwgBo1ali9hp49e7J161aWLl1q8zPJrps3bxo/3lq2bGl1H/OQ3YSEBE6dOmXMK2vP8NBb748tiYmJPPnkk1SsWJHt27ezatUqgoODOXLkCJA5FLh3794899xzmEwm433WnnvzZ2D21FNPARAUFMTDDz98x8/2zJkzLF++nB07dhAfH8+lS5coVaoUdevW5amnnuKVV1657VkRsUWZqkxVpmJx35SpylRlquSE8lR5qjzF4r4pT5WnylO5l6mRQgAoVaoULVq0IDIyktmzZ5OQkMDzzz9PixYtbquwVapUiUqVKlk9TkBAADNmzDAWNfP29iYlJYWIiAgiIiJYu3Yt8+bNs5hv79y5c/Tv35+YmBhMJhOenp5Uq1aNpKQkDh8+zOHDhwkNDSUkJISqVave8TpSUlIYMGAAhw8fplGjRnzzzTfZnq/w999/57vvviMjI4PatWtTqlQp4uPjCQwMZMuWLYSEhFj0oEhJSWHo0KHs27cPk8mEl5cXxYoVY8uWLWzbto327dtn67z5LTIykilTppCeno6Xlxcmk4mjR4/y6aefcu7cOUwmE19//TVlypShdu3axMbGEhUVxeuvv87ChQtvu45p06YREBAAwH333Uf9+vU5c+YMmzZtYtOmTQwZMoSxY8dmu3zR0dEcO3aMcuXK3bGH1JkzZ+jVqxenT5/G09OTOnXqEBsby/r169m8eTMBAQG3VT5DQ0OZMGECaWlpuLq6Ur9+fS5dusTevXvZu3cvq1evJiAg4K7PlT0WLFhAZGQknp6euLu7c/HiRWrXrk18fDwvv/wyycnJuLm5UadOHQDi4uJYunQpa9asYenSpVZ/fLVp04ZixYqxY8cOUlNTKVu2bI7Ll5SUxNWrVwFsDiuvVq0axYsX58aNG8TFxRkVQHvmG7X1N8KWjIwM3nvvPdauXUuZMmWoU6cOCQkJ7Nmzhz179hAbG3vX56p+/fpcvnyZAwcOANC4cWNcXFzuOr/nnj17GDJkCBcuXMDFxQVPT0+cnJxITEwkKiqKqKgoNm3aRFBQkNUfsCK3UqYqU5WpeUOZmkmZKv+rlKfKU+Vp3lCeZlKeihRuaqQQwwcffEDfvn25fPkya9asYc2aNZQuXZqWLVvSqlUrHn74YZo2bUqxYtZnCVu/fr3R8jt8+HDeeOMNY5heWFgY77zzDhEREYwbN4758+cb7/v888+JiYmhVq1aLFy4kNq1axuvbdu2jZEjR5KcnExgYCDvvfeezfKfP38eX19fDh06RNOmTfnmm28oU6ZMtq9/6dKlPPbYY0yePNmYD3DTpk2MHDmS48ePs2rVKgYMGGDs7+/vz759+6hZsyZz5syhQYMGQObibaNGjcpWC31BCAkJoWXLlnz11VdUqlSJmzdvMmHCBEJCQli0aJERvAMGDKBYsWKkpKTg6+vLwYMHCQgIsKgAfvfddwQEBFCmTBk++OADunfvDmSG9y+//MKECRMICAigVq1avPjii9kq386dOwFo3ry5zWcLMnszeHh4sHLlSh544AEgsxfF4MGDiYuLY8aMGaxcudLYf+/evYwfP5709HR69+7Ne++9Z1Tg//rrL0aPHk1MTAzDhw8nODg4zxZ0i4yMZOzYsQwZMgTI/IFTvHhxZs6cSXJyMp07d2bq1KmUKlUKgLNnzzJixAiioqKYPn06ixcvvu2YZcuWpV69esTExBAWFsbTTz+d4/IlJycb/21rUcHixYvj7u5OamoqKSkpxvZbFzfLS8nJyaxbt44JEybQt29fihcvzrVr15g4cSKhoaF8++23+Pr63nEhxA8++MDo9QIwc+ZMatWqdcfz3rhxg3fffZcLFy7QsWNHPvnkE+677z4Arl+/zrfffsv06dPZvXs327Zt47HHHsuza5Z7mzJVmapMzT1las7LpUyVe4XyVHmqPM095WnOy6U8FSk4WpNCDI0aNWLlypUWw+suXrzI1q1bmT59Or179+bRRx9l5syZXLly5bb3z5w5E4CXXnqJUaNGWcwj+MgjjzBnzhwANm/ezO7du4HMP7C7du3CZDIxfvx4i8ofQLt27ejatSsAMTExNsv+zz//MHDgQA4ePIiPjw9Lliyxq/IHUKFCBWbNmmWxYNGTTz5pVIAiIyON7UePHmXdunWYTCbmzp1rVP4gc/G2r7/+utAMu3NycmLGjBlGr4FixYoxdOhQIHNYZY8ePfD19TUqX+XKlTOGKB48eNA4TlpaGrNnzwbgk08+MSp/kDlHZNeuXXn33XcBmD17Nunp6dkqX3h4OJDZw+Bupk2bZlT+AGrWrMmIESOAzCHc165dM16bNWsW6enpPProo0yePNmih1HDhg1ZtGgRrq6u/Pnnn3k6r6WHhweDBw82/t9cYYmOjgYy59g0V/4AKlasyIQJE2jXrh316tWzeVzz/QkLC8tV+cw9VABcXFxs7md+zdp3Pb+88sor9OvXz+gJ4uLigp+fHyaTifT09HyZYzg6OprU1FRKlCiBv7+/UfkDcHZ2ZujQodSsWRO4898gkVspU5WpoEzNLWVqzilT5V6hPFWegvI0t5SnOac8FSk4aqQQC/Xq1eM///kPP/zwAyNGjMDHxwdnZ2fj9eTkZBYsWED37t05ffq0sT0uLo7Y2FgA+vfvb/XYPj4++Pj4AJm9PyDzD+ymTZvYu3ev1dbfjIwM3NzcAMvgyurixYv4+vry559/0qxZMxYvXpyjha1at25tNRC9vLyAzEqm2W+//QZkzpdobQ5EDw8PY/E2R/P29r5tqKiHh4fx39bmjzRXgi9evGhsi4qK4uzZs5QqVcroBXCr7t27U6xYMZKSkiwqj3eSmJgI2B7WaVapUiWrQznN9z8jI4PU1FQALl++bFQszZXZW9WsWdP4jMzPY17w8fGxmJfSzNxbYtq0aWzcuNHieW7atCmLFi1i/PjxNo9rHnqbkJCQq/LdqSeQNdauJb88/vjjt20rV66cUYm+cOFCnp+zcePG7Nq1i127dlkddp+WlmZUCguyMiz3BmWqMhWUqbmhTM05ZarcS5SnylNQnuaG8jTnlKciBUfTPYlVDRs2pGHDhowcOZIrV64QGRnJ9u3bWbt2LcnJycTHxzNq1Ci+//57AI4dOwZAyZIljQqTNU2aNCEqKsqoLJq5uLhw9uxZ9u7dS1xcHImJiRw7doy//vqL8+fPA5k9Kqz58ssvjTBNTk7OcWDZWvTM3Nska6+Lw4cPA1j0TrlVkyZNWLduXY7KkpfMczVmlbUHkbXQszas1HzN169fp2/fvjbPV7x4cW7evMmxY8csepTYYh7aebdeRVl7D2Vl/oEA//5ISEhI4Pr160Dm52CL+TO69XnMDVvzXI4aNYrw8HBiY2N58803KVGiBD4+PrRt25YOHTrc8VkCjDkrz507l6vyZb1f165ds9lTxdzjJ2tvqz59+mT7PJUqVWLWrFl2le1u38EbN27YdTx7uLq6cuzYMQ4ePEh8fDwJCQkcOXKEQ4cOGffC1t8gkbtRpv5LmZpJmZo9ytRMylSRTMrTfylPMylPs0d5mkl5KlK4qZFC7qpkyZK0bduWtm3bMmrUKPz8/Pjpp5/Ys2cPf/75J40bNzZ6M9ytd4h5COGlS5eMbX///Tcff/wxmzdvtvgDW7JkSZo2bcqNGzf4448/bB7z6tWrPPTQQ8TGxpKYmMgXX3zBRx99ZPd1Zu2NczfmORCzhumtctJTJj+ULFnyjq9nt9eCuZdOWlqaxbBiW7Lbo8C8392GHt9p2OetsvauudOCVObPKOvzmFu2ytmwYUNCQ0P5+uuv+e2330hNTSU8PJzw8HBmzJhB/fr1+eijj2jVqpXV95ufNfMPopzKWuFPTU21WvFOT083Pu8KFSoY27PzuZtl7QmVXXf7DmZkZNh9zOzYu3cvH3/88W09q8qVK0eHDh04ePCg0ZtKJLeUqbdTpipTbVGmZlKmitxOeXo75any1BblaSblqUjhpkYKAeDDDz8kLCyMXr168cYbb9jcz9XVlUmTJrFhwwauX79ObGwsjRs3Nip2WYPXGnPYm/e/du0a/fv35+jRo5QtW5Y+ffrQpEkTvLy88PT0NBZzulMFsG3btsybN48tW7YwatQoVqxYQefOnXnkkUfsvQ3ZZq5U3el687JSURiYr7lx48aEhITk2XFdXFy4fPmyxVDl3Mo6n+Y///xjUYnJylyZyrq/ma3KRm6GU9asWRN/f38mTZrEgQMHiIiI4P/+7/8IDw8nJiaGwYMH88svv1jtWWQua27nka1SpQru7u78888/nDhxwuoQ5lOnThk9QrLOwXvo0KFcnbswOnr0KP369ePq1avUq1eP559/ngYNGuDl5WX0mnn55ZdVARS7KFPto0xVpuaEMrXwUaZKXlOe2kd5qjzNCeVp4aM8lf9VWpNCgMyK2PHjx9m4ceNd9y1durQRmOZ5+OrWrQtkhuPRo0dtvvfAgQPAv3Mfbty4kaNHj+Lk5MT333/P6NGj6dixI3Xq1DEWJso6r6g1Xbp0wdXVlaeffpqOHTuSkZHBhAkTuHz58l2vJafMC0TdKRDNi1DdK8zzTcbFxdlccCwjI4OwsDDi4uJIS0vL1nErVqwI/NvzJy94enoaw4HNz5w1tz6PgPHcmYfi3urMmTN2lycjI4PExER27twJZPYMeuCBBxg8eDCLFy/mxx9/pHTp0ly5coUNGzZYPYb5/tiqzNrDPMQ5KirK6uvm7R4eHjaHt94rAgMDuXr1KnXr1mXVqlX4+vrSpk0bi+tOSkpyYAmlKFKm2keZqky1hzK18FKmSl5TntpHeao8tYfytPBSnsr/KjVSCJC5mBRkBuLdeiBs376d1NRUypYtS7NmzYDMyoG5ghAYGGj1fZGRkezbtw+A9u3bA/8uSFWqVCmL1nCzs2fPsmXLFiB7c/19+OGHuLu7G0Nq80unTp2AzKC0VuFNTk42Fi67Vzz44IO4u7tz6dIlm8/Ijz/+SP/+/enSpctdK+5m5ucmu/tnh5ubm9FLKSgoyOo+CQkJbN68Gfj3eYR/h5qa57DN6saNG8Z77JGamkrnzp0ZOHAg+/fvv+31OnXqUL16dcD2nJLm+2P+sZUbXbp0ASAkJMRqRf27774DoFevXrk+V0HLOjQ8O0NvT5w4AWQuPmht2PmOHTs4efIkkL/zjcq9RZlqH2WqMtUeytSCo0wVR1Oe2kd5qjy1h/K04ChPRbJHjRQCZA5H7dy5MwATJ05kypQptw0du3btGqtXr2b06NEAjB492mII4qhRowD4/vvvmTVrlkWwhIeH89ZbbwHQrl072rRpA/wbZufPnycwMNDiD/aePXsYOHAgqampQPaGMFapUoVx48YBsGLFCsLCwrJ9D+zRqFEjOnbsyM2bNxkxYgRHjhwxXjt58iTDhw+/67DiosbNzY2hQ4cCMGXKFFavXm1RWdm4caMxz2qXLl2sDtG0pkWLFoDtHhM5NWLECJycnNi+fTsffPCBxecRHR3NkCFDuHbtGg0aNKBnz57Gay1btgQyF2ELCgoynsnz58/j5+dHTEyM3WUpV64c7dq1A8DPz8/iR8PNmzdZvnw5MTExFCtWzNjvVub7Yy5fbnTv3h1PT08SEhIYO3ascW/S0tLw9/fnjz/+wN3dnVdffTXX5ypoWefgNVfc7sT8A2THjh3s3r3b2J6ens66desYM2aMsc286J3I3ShT7aNMVabaQ5lacJSp4mjKU/soT5Wn9lCeFhzlqUj2aE0KMUybNg03Nzd++OEHgoKCCAoKonr16lSoUIFr164ZwyOdnZ1555136NOnj8X7u3TpQnx8PDNnzmTu3LkEBgZSp04dzp07Z7QEP/TQQ3zxxReYTCYAnnjiCXx8fIiKiuKTTz4hICCAKlWq8Pfff5OUlITJZKJNmzbs3LmTM2fOkJGRYbzXlhdffJEff/yRiIgI/Pz8+PHHH63O55hbkydP5vjx4xw+fJhu3bpRr149ihcvzuHDh3FycsLb25tDhw4ZQzPvBUOGDCEhIYHg4GD8/Pz44osvqFGjBklJScYQ05YtWzJlypRsH7N9+/bMnDmT/fv3k5aWRokSJfKkrD4+PkyZMoWJEycSHBxMaGgoXl5eXL58mdjYWCBzSPScOXMsztmhQwdatWrF7t27mTJlCt988w3lypXj2LFjXL9+nZEjRzJ79my7yzNp0iReeuklYmJi6NatGzVq1MDd3Z2TJ08aw2THjBlDvXr1bnvv6dOnOXHiBE5OTrRt2zaHd+RfLi4uTJ8+HV9fX9avX8+2bduoW7cuiYmJpKam4uzszJw5cywWMCsqypYti4eHBydOnODNN9+kbt26jBo1yqInUla+vr6sW7eOlJQU+vbtS+3atSlVqhSJiYmcP38eNzc3429UXvakknufMtU+ylRlqj2UqQVDmSqFgfLUPspT5ak9lKcFQ3kqkj0aSSGGEiVK8Omnn7Jy5Up8fX1p3LgxaWlpREdHc/r0aerUqcOgQYMIDQ01eivc6vXXXyc4OJhu3bpRunRpoqOjuXr1Kq1bt+azzz4jMDDQIlSKFy9OYGAgY8eOpWHDhly5coWYmBicnJzo2rUry5cvZ968ebi4uJCamkpkZORdr8NkMuHv74+rqysnTpzItyG15cuXJzg42AiZ+Ph4Tp48yeOPP05wcDDNmzcHsDo8r6gymUxMnjyZxYsX06lTJ5ycnPjrr7+4dOkSzZs3Z+LEiSxZssSua27UqBH3338/165dIzw8PE/L27NnT9auXUvv3r2pWLEihw8fJiUlhRYtWvDhhx+yatUqatasafGeYsWKsXjxYkaPHs39999PcnIyJ0+epHXr1qxYsYJnn302R2WpXLkyq1atYtCgQdSrV4+///6bmJgYXFxceOaZZ1ixYoXN79Xvv/8OwKOPPpon831C5pyfa9eu5YUXXqBMmTIcOnQIk8lE586dWblyZb4u6pffvvrqK3x8fLh58yZxcXHEx8fb3Ld69eqEhobSp08fateuzalTp4iNjaVixYq89tprhIaGGj3zwsPD83UeYbm3KFPto0xVptpDmVpwlKniaMpT+yhPlaf2UJ4WHOWpyN2ZMrIzIZqI2O2tt95i/fr1jBkzhmHDhjm6OIXamjVreP/99+ncuTOzZs1ydHEKnRdeeIH9+/ezbNkyHnzwwWy9Z/bs2cyZM4cWLVqwYsWKfC6h3Mrb2xuAb7/91pg6QERyTpmafcrUO1OmFj3KVJG8ozzNPuXpnSlPix7lqRR2GkkhkgM7duzgySefNOY4vdWVK1eIiIgAMnthyJ09++yzeHp6snnzZpKTkx1dnEIlOjqa/fv389BDD2W78iciUpQoU/OWMtU2ZaqI3MuUp3lLeWqb8lRE8oMaKURyoGHDhiQlJfHrr7+yePFi0tPTjdeSk5MZO3YsKSkp1K1bl9atWzuwpEWDk5MTI0aM4Pr16wQFBTm6OIXKokWLMJlMNn9siIgUdcrUvKVMtU2ZKiL3MuVp3lKe2qY8FZH8oIWzRXKgfPnyjB07lqlTp/L555+zcOFCPDw8uHLlCgkJCVy/fp2qVavy5Zdf4uzs7OjiFgk9evTgl19+YcmSJfTp04eqVas6ukgOt3//ftatW0ffvn1p1apVjo4RExNjLCA4bNgwOnTokJdFlCwWLFjA1q1bHV0MkSJHmZr3lKm3U6YWLcpUEfspT/Oe8vR2ytOiRXkqRYlGUojk0IABA1i1ahXPPvssZcuW5dixY5w9e5Z69eoxcuRIfvjhB2POP8meyZMnU7JkSWbOnOnoohQKn3/+ObVq1WLs2LE5PsbFixeJjIwkMjJSw5TzWVxcnHGvRcQ+ytS8p0y1pEwtWpSpIjmjPM17ylNLytOiRXkqRYkWzhYREREREREREREREYfQSAoREREREREREREREXEINVKIiIiIiIiIiIiIiIhDqJFCREREREREREREREQcQo0UIiIiIiIiIiIiIiLiEGqkEBERERERERERERERh1AjhYiIiIiIiIiIiIiIOIQaKURERERERERERERExCHUSCEiIiIiIiIiIiIiIg6hRgoREREREREREREREXGI/wcjnSx/Ad7MWQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH3CAYAAADOlrxeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnGElEQVR4nOzdd3gUVdvH8d+mkYQeilQBkUDoCIgUpYkBUUQEFJGmgIooYEFRVASVIjwqiBSlF6UjIFVEpPPQe0AhlNACgQAhPfv+wZt9EtJ2k81Osvv9XBfXxeycmbnvZJOzmXvOOSaz2WwWAAAAAAAAAACAg7kZHQAAAAAAAAAAAHBNFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDUKQAAAAAAAAAAACGoEgBAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEB5GBwAAAGCtXbt2qXv37lk6x6OPPqo5c+ZY3f6jjz7SsmXLJElbt25VsWLFsnT9pJLm895776lv376ZOs/Zs2c1a9Ysbdu2TZcuXVKePHlUpkwZtWrVSi+++KKKFClit5gzK7Xv3erVq1WxYkWrz9GtWzft3r3bsr1gwQLVrl3bXiEmu4aXl5cOHz5s13NL0okTJ1SlShW7nzc3uHjxolatWqVt27bp33//1c2bN+Xp6akiRYqoWrVqCgwMVKtWreTp6Wl0qFaJiIhQWFiYypYta3Qo6QoLC1NcXJyKFy+e5XNt2bJFffr0UatWrTRhwgTL6/f/bLZp00bfffed1efdvXu3unXrZtlu0qSJpk2bluFxhw4d0urVq7V3716dPXtWERER8vHxUcmSJVWnTh21a9dO9erVy/A8a9as0bRp03Tq1Cl5eXmpXr16eueddxQQEJDucZ988okWL16sV199VR9++GG6bT///HP9+uuvGj16tNq3b59hTAAAAK6EkRQAAAC52NKlS/Xss89q3rx5Cg4OVnR0tG7duqVjx47p+++/V9u2bbV582ajw0zV2rVrrW4bGhqqPXv2ZGM02ev27dv68ssv1aFDB6NDcbhbt27ps88+U6tWrTRu3Djt3LlToaGhio2N1d27d3X+/HmtXbtWgwYNUrt27bR//36jQ87Q6tWr1aZNG/33v/81OpQ0JSQkaN68eWrdurXOnDmT5fPduHFDQ4YMkaenpwYPHpxu282bNys6Otrqc69evdqmWE6fPq2ePXuqU6dOmjFjhg4dOqTw8HDFxcXp9u3bOnnypBYsWKCuXbuqT58+unr1aprnWrhwoQYOHKjDhw8rKipKt27d0p9//qkXX3xRO3fuTPO4f//9V8uWLVO+fPmsKjAPGDBA+fPn14gRIxQSEmJTvgAAAM6OkRQAACDXqF69upYvX57qviNHjmjo0KGSpObNm2vAgAGptvP19c2u8Bxu8+bN+vjjj2U2m+Xt7a1evXqpfv36MpvN2r17t2bMmKEbN27onXfe0fz581WtWjWjQ05m3bp1euutt6xum5CQkM0RZZ+RI0dqyZIlRofhcGfPntVrr72m8+fPS5JKlSqldu3aqXbt2ipSpIhiYmIUFBSk5cuX69ChQzp9+rR69OihCRMmqGnTpgZHn7o9e/Zo0KBBRoeRoRUrVmj48OF2O98333yj0NBQvfrqqxmOHrl7967+/vtvtWrVKsPzxsfHa8OGDVbHsWnTJg0aNEiRkZGSpBo1aqht27aqUqWK8uXLp1u3bungwYNatGiRLl68qL///lsvvvii5syZozJlyiQ7V3h4uEaOHCnp3ii7119/XdHR0fruu+908uRJffzxx9qwYYPc3d1TxPHdd98pPj5er732mgoXLpxh3H5+furbt6/GjRunESNGaPLkyVbnDAAA4OwoUgAAgFwjb968aU6/cevWLcv/CxUqlOE0HdYaNWqURo0aZZdz2VNCQoJGjBghs9ksT09PzZs3T9WrV7fsb9KkiR5//HF1795dUVFRGjdunKZPn25gxP9TpEgRXb9+XUFBQQoODlb58uUzPGbNmjWSJC8vL8XExGRbbLZMBWaL3FxgyaywsDD16tXL8tR4jx499P7778vLyytZu3r16qlr166aMWOGRo8erejoaA0aNEi//fZbjpxKKT4+3ugQrGLP99zBgwe1dOlS5c2bN91RA56envL19VV4eLjWrl1rVZFi9+7dunbtmlU/2/v27dPbb7+t2NhYeXp66quvvtJzzz2Xol3jxo3Vq1cvffLJJ/r999918eJF9e/fX4sXL5aHx//+BP7jjz909+5dFSpUSFOnTpWPj4+kewXxFi1aKCQkRHv27FGDBg2Snf/QoUNav369ihYtqp49e2aYY6Ju3bpp9uzZ2rRpk/7880+1aNHC6mMBAACcGdM9AQAA5EI7d+60PJ3+yiuvJCtQJKpfv77lafRt27YpPDzcoTGm5cknn7T8f/369Rm2v3Llivbu3StJevzxx7MtLtjXV199ZSlQ9O7dWx9//HGKAkVSvXr1stzwjYiI0DfffOOIMGGFcePGyWw2q2PHjumOGjCZTGrZsqUk6a+//rKqoJhYgMzoZzs6OlqDBw9WbGysPDw89P3336daoEjk4+OjMWPGqGbNmpKk48ePa8GCBcnanDhxQpJUp04dS4FCkh544AHLejlBQUEpzv2f//xHkvTmm2/aNDrPx8fHsvbGd999J7PZbPWxAAAAzowiBQAAQC7VvHlzlSpVynJTMDVJF6a+dOmSI8LKUJkyZVSjRg1J1q1LsXbtWpnNZpUvX95uI2SQvYKCgrRq1SpJUvny5fXuu+9adVz//v1VsGBBSfeecr9y5Uq2xQjr7NmzR7t27ZIkderUKcP2rVu3liTduXNH27ZtS7dtfHy8pVD59NNPp9t20aJFlsJsu3bt0v29l8jDwyPZgtZz585Ntv/u3buSpAIFCqQ4Nl++fJLuFcyS2rZtm3bs2KEyZcroxRdfzDCG+z3//PPy8PBQUFCQ/vjjD5uPBwAAcEZM9wQAAFxSt27dtHv3brVs2VLffPONRo0apfXr1ysqKkolSpRQly5d1LNnT3300UdatmyZJGnr1q0qVqxYinOdP39eixYt0u7du3X+/HmFh4fLy8tLfn5+qlWrljp06KDGjRvbNf5GjRqpUaNGGba7ePGi5f/Fixe3awxZ0bp1ax0+fFhHjx7VhQsXUswVn1Tik9YZ3cRM6u+//9bSpUt18OBBXbt2TXny5FGZMmX0+OOP65VXXtEDDzyQ6nGJ7wsvLy8dPnw4xf7Tp09r/vz52rlzpy5cuKCEhAQVLlxY1apV01NPPaVnnnkm2XQyEyZM0A8//JDsHJUrV5Z0bw78xOmlMrpuomeeeUanTp1S6dKl9eeff6Z63iFDhqhZs2YaMWKE9u7dKw8PDz344IN6//33k71nYmNjtWzZMq1du1ZBQUEKDw9X/vz5VaVKFQUGBqpDhw7pjnxIz8KFCy3/79OnT6pz+qcmX7586tevn27cuKH69etbChb3u3DhgubNm6ft27fr/PnziouLU9GiRVWnTh117NhRDRs2TPW4pUuXasiQIZKk//73v3Jzc9PMmTO1YcMGnT9/XmazWeXKlVOrVq3Uo0cPy43qxGvef2N8yJAhlvNt3Lgxxfv40qVLmjNnjrZu3aqQkBDFxsaqWLFiqlevnl566SXVqVMn1TgT3zf58+fXnj17FBoaqhkzZmjTpk26dOmSPDw8VLFiRbVp00Yvv/xysu/Trl271L1792TnS7qd2siA9MybN0+SVK1aNVWqVCnD9g0bNlSBAgV069YtrVu3Ts2bN0+z7c6dO3Xjxg15e3un205SslEQb775ppXRy/K1fvDBB1WvXj2ZzWaZTCZJ/ytO3LlzJ8VxiSPP8ufPb3nNbDZr3LhxkqS3335bnp6eVseRqHjx4mrUqJH+/vtvzZs3z6opsQAAAJwdRQoAAODS4uLi1LdvX+3Zs8fyWnBwcJo3R+83ZcoUjR8/XnFxcclej42NVUREhM6fP69Vq1apS5cuGjZsmD1Dz9ChQ4csT+o2aNBAfn5+Dr1+egIDAy3T+axbt06vvfZaqu0uXbqkAwcOSLpXpMho5MXNmzc1ePBgbd68OdnrMTExOn78uI4fP67Zs2dr2LBhev75522KeeXKlRoyZIhiY2OTvX758mVdvnxZGzdu1MyZM/Xzzz+raNGiNp3bni5fvqwuXbooLCzM8tqxY8f04IMPWrbPnj2rN998U//++2+yY8PCwrR9+3Zt375ds2bN0sSJE/XQQw/ZHEPSr39GN5/vl9Ec/7NmzdLYsWNTTCUUEhKikJAQrVq1SoGBgRo1alS6U/GcOXNGAwcOTFbIk2R5nyxatEhz585Nt4CWnkWLFmnEiBGKjo5O9vqFCxd04cIFLV++XC+++KI+/fTTdG9279mzR2+99ZZu3ryZ7PUDBw7owIEDWrp0qWbPnq1ChQplKs70hIeHWxa1tnYhcy8vL7Vs2VLLli3Tn3/+aVk/IjWrV6+2nDtv3rxpnvPSpUs6efKkJOnhhx9O9l62xhdffJHq6/7+/pKk/fv3Kzo6Wnny5JF0b4q5M2fOSJKqVKliab9mzRodPXpU/v7+ateunU0xJNW0aVP9/fff2rlzp0JCQlS6dOlMnwsAAMAZUKQAAAAubcuWLUpISFCLFi3UvXt3xcfH648//rBMWZKeJUuWWOYmL1GihF555RVVrVpVefPm1cWLF7Vp0yatWrVKCQkJ+uWXX9SyZctsXVPBbDYrIiJCZ8+e1W+//aaFCxcqJiZGBQsW1GeffZZt182MsmXLqnr16jpy5Ei6RYrEqZ4efvhhVapUKd0iRVRUlN544w3t379f0r0bkN26dZO/v7/u3r2rLVu2aP78+YqKitJHH32khIQEvfDCC1bFe/bsWX388ceKjY1VmTJl1Lt3b/n7+8vd3V3nzp3T/PnztX//fh0/flxffPGFJkyYIEl66aWX9OSTT+r777/Xpk2bJEnLly+XJJvmsrfFrFmzZDab1bt3bzVv3lzXrl3T8ePHLTfbQ0ND1bVrV4WGhsrT01OdO3dW06ZNVbhwYYWGhmrDhg1asWKFTp8+re7du2vp0qU2jcK5c+eOZVqeChUqqEiRInbN7euvv5Z07+v3yiuvqFGjRvL29taJEyc0a9YsnTlzRuvWrVN4eLimT5+e5iiOt956S6GhoXrmmWfUtm1bFSlSRP/++6+mTJmi4OBgXbp0ScOGDdPPP/8s6d4T8MuXL9eRI0c0dOhQSfeepk8cXZH0a7R06VJLmzJlyuiVV15RjRo15O7urn/++Ufz5s2zrJEQGxurkSNHphpjVFSU+vXrp4iICHXp0kUtW7ZUvnz5dOzYMU2ePFlXr15VUFCQvv32W8uN+OrVq2v58uXauHGj5X345ZdfprpuTUb+/vtvS1HOltFgrVu31rJlyxQeHq4dO3boiSeeSNEmLi7OUkRt06ZNuuc7duyY5f9169a1Oo6MtGjRQr6+vgoLC1OfPn3Ut29fRUdH67vvvlN8fLzKlSunRx55xBLv999/L0kaNGiQ3NwyP3Ny4ogms9msjRs3phj5AgAA4GooUgAAAJeWkJCgunXrauLEiZabTk2aNMnwOLPZrPHjx0u6N2XI3LlzVbZsWcv+2rVr6+mnn1atWrU0YsQISfduuGdnkWLFihUaPHhwstceeeQRffnll8nWpsgpWrdurSNHjujQoUO6fPmySpQokaJN4lRPGd3ElKQZM2ZYChSBgYEaN25csie4GzVqpHbt2qlHjx4KDw/XF198oSZNmqQ59VNSK1euVExMjNzd3TV79uxkTz7Xrl1bbdq0Ubdu3bR//35t2LBBYWFh8vPzU7FixVSsWLFkT7ln97oaCQkJeuONNzRo0CDLa0mLbp9//rlCQ0OVL18+zZgxw7KwcKKWLVsqMDBQb775pkJDQzVy5Eh9++23Vl//woULlv+XKlUqC5mkPG/i6JuiRYtq9uzZyd7XderUUYcOHfT2229r8+bN2rlzp2bPnq1evXqler7Q0FB9+eWXydZZqFWrlp588kk9/fTTCg0N1datWxUaGqpixYrJy8tLAQEBunXrVrL87v9+XrlyRcOHD5d0b+qjH3/8MVlBqk6dOnr++ef14YcfatWqVVq6dKnatGmT6o382NhY3blzR5MnT062v06dOnriiSf07LPPKjIyUqtWrdLQoUPl6empvHnzKiAgQMePH7e0f/DBBzP1vtu5c6fl/0lHFGSkUaNGyp8/v27fvq3169enmtv27dt18+ZN+fr6qlmzZumeL3EBdsm+76mCBQvqk08+0dChQ7Vr1y7L2hvSvUWuR44caekXlixZouDgYD3yyCNq0aJFlq5boUIF+fj4KDIyUjt27KBIAQAAXB4LZwMAAJf34osv2vxUbEhIiAoWLKj8+fOrQ4cOyQoUSSWdEiS7FwG+f9oaSTp58qTmzp1rmV89J0m8cW42m7Vu3boU+0NCQnTw4EFJGa9HER8fr5kzZ0q6dwN75MiRqU4xExAQYFlDIDo6WrNnz7Yq1tDQUEn3nt5PbVSBp6en3nnnHXXr1k1DhgyR2Wy26rzZpUuXLqm+fubMGctaFm+88UaKAkWi5s2bW6bDWrt2rU3v3aQLDRcuXNjq4zIya9Ysy1P9n376aaqFtzx58uibb76xTNc2bdo0JSQkpHq+GjVqpLoQdIECBSxFMbPZbPMaDvPnz1dkZKQ8PDw0evToVEfMeHh4aNiwYZb1DtJ7H7Zq1SrVm/xly5a1PJF/586dZMUhe0lcH6VUqVLJ1ufISOKUT9K9BdDj4+NTtEksQDZv3lw+Pj7pni+73lOS1LFjR02ZMkWPPPKIvL29lS9fPrVo0UK//vqrZdRGVFSUJk6cKEl67733LMceOnRIH3zwgV544QX16NFDM2bMSDENWWpMJpPl/ZveGjQAAACugiIFAABwebVr17b5mDJlymjFihXas2ePPvzwwzTb5c+fX97e3pJk1c2rrKhfv75mzJihRYsWacyYMapdu7bu3Lmj+fPn65VXXtH169ez9fq2Klu2rKpVqyZJqRYpEm9iVqlSJcN1EY4cOWKZs//ZZ59Nd377Z555xnJz+O+//7Yq1sTr3759WwMGDEixloN07+nxoUOHqkePHnad4shWDzzwQKqjUqR7a0UkFlAymr4n8cZ4QkKCdu/ebfX1k06vZM/3/NatWyVJfn5+6S42XLBgQbVt21bSveJS0hEFSaWXf9I1D5LeILfGX3/9JUmqWLFiuqN08ufPb5lKaM+ePSnWOkmU3siurMRpjXPnzqW4jrUSi5A3btxI8f6JjY21TPWUUQFSyr73VKKmTZvql19+0cGDB7V3715NmjQp2ciROXPm6MqVK3riiSdUr149SfeKLy+99JJWrFihI0eOaOfOnRo1apRefvnlVBfivl/58uUl3XuPZsf3DgAAIDdhuicAAODySpYsmaXjE0dhJM7Ff+7cOf377786fvy49u7dq6ioKEnK9qfrE2+eSVLNmjX17LPPaujQoVqyZIlOnjyp0aNHa8yYMdkag61at26to0ePav/+/bp69WqyUQqJRQprbmImLqor3ZuyJz2enp6qVq2adu7cqX/++UcJCQkZjqRp3769pk2bpitXrmjjxo3auHGj5Un2xH8FChTIME5HSO/9nPSGvS0LhyeuMWGNpIvO37/Yc2bFxcVZFjJOXNshPbVq1dL8+fMl3XtvJBbDkkpvQeykox9SGwWQXpyJ78WgoCBVrlzZquMiIyN1/fr1VItL6S2qnNk4rXH79m1FRkZKUqbe240bN7ZM+bR27Vo1bNjQsm/btm26deuW8uXLl+ookftlx3vKWrdu3dJPP/0kk8lkGUVx584dDR06VPHx8erWrZv69eunK1eu6N1339Xhw4c1duxYDRs2LN3zJhZKJenq1auqUKFCdqYBAACQozGSAgAAuDRPT095eXll+vh///1XQ4cO1RNPPKG6deuqffv2euedd/T9999r/fr1CgsLs2O0tnFzc9OwYcMsT3OvXr3actPRGsePH0/3nz2eaE6cVichIUEbNmywvH7+/HkdOXIkWZv0JL1xac0ohqJFi1que/v27QzbFyxYUDNmzEg26ub8+fNasGCBBgwYoMcee0w9evTQihUrDJ/qKb1peW7cuJGpcyZdhyEjpUuXlofHvWeh7DXFWXh4uOXrasv3N/HY1KS3cLnJZLL835bv561bt9KcXiojjozTGnfv3rX835apnhJ5eXlZ1m74448/kn1dEguQLVu2tOr3b9KRHNk9bd79fvrpJ4WHh6tt27aW0RVr167VjRs3VKFCBX3yySfy8/NTQECAvvrqK0nSsmXLkn39UpO0SJFRWwAAAGfHSAoAAODSkt7ks9WSJUv02WefKS4uzvJaoUKF9NBDD6lSpUqqVauWGjdurDZt2hh2E8rLy0vNmjXTggULFBsbq9OnT6f6VHlq2rdvn+7+jRs3pvs0ujUSp3w6evSo1q1bp65du0r6303M6tWrWzXVjK03aJM+dW7teiQVK1bUggULdPDgQa1bt05///23Tp06ZTnfzp07tXPnTi1dulSTJ0+2TPNlT5m9AZ4oad6LFi1Kdd2O1Pj5+Vl9jcQFpg8fPqyzZ8/qypUrVi1OnujEiRNavHixHnvsMdWvX18FCxbM0vc3Kz/jtkr6u+Dxxx9Ptn5BRsqVK5cdIdmFrWv2JGrdurV+++03Xbt2TXv37lX9+vUVExOjjRs3SrJulJT0v9Ez8fHxNk09lmjlypU6c+aMGjRooDp16lhdmL569armzJkjT09PDRgwwPL63r17Jd0bvZb0/VWnTh15e3srKipKx44dSza67X5Jv6aOfI8CAADkRBQpAAAAMiEoKMhSoMibN6/efvtttWrVKsVN+4SEBMt0T/YUHh6uc+fO6dq1a2revHm6bQsVKmT5f1rz3hspccqnPXv2KCwsTH5+flq7dq0k629iJs3RmrU3Ett4enqmu35FamrVqqVatWpp8ODBCg0N1c6dO/XXX3/pjz/+UFRUlHbs2KFp06bprbfesum8UsbFFmtGfaQn6bQ5DzzwgE3FA1s0bdrUsiDw1q1b9cILL1h97Jo1azRnzhzNmTNHb775pgYOHJhsuiFbvr9S8pyzW9L3YUJCggICAhx2bXtL+nOR2d9hTZo0Ub58+XTnzh2tW7dO9evX19atW3X79m0VLFgww3VREuXLl09169bV7t27dfbsWZ0/f15ly5a1Oo558+Zp//79mjhxombOnJls6qn0TJw4UZGRkerSpUuyYunVq1clpRzVYzKZVLBgQUVFRVnapCVp4drW30EAAADOhumeAAAAMmHBggWWp6Y/++wz9erVK9VRBZcvX87y0++pGTx4sDp27Kg333wzwymlEhe/lZTmgsqpCQoKSvdfVkdRJEpcYDc+Pl4bN27U+fPndfToUZlMJqumepKUbO7/Q4cOpds2JiZGx44dk3Tv6XVrnhKPiorS8ePHLSMnEhUrVkzPPvusxo0bp19++cVyrsTFk62VOD1SbGxsmmsLREVFZXq6pkSVKlWy/P/gwYPptj148KCmTp2q1atX6/LlyzZd57nnnrN8LebNm2f1SIjIyEgtXrzYsp24ALaXl5dl8fIjR45k+DN14MABy/8zWnTdnry8vCwjIo4ePZpsZEVqfvnlF82bN09//fVXhm0dLV++fJappjK64Z6WpFM+bdiwQWaz2VKAfPLJJ60eySMlX0Nlzpw5Vh935MgR7d+/X9K9n9dHH33UquPOnj2rJUuWyMfHx6aCY+LPb0bv0WvXrkm6V9hIuhYPAACAK6JIAQAAkAlnz561/D+96ZNWrFhh+b89b0LWrVtX0r0n75Pe1L1faGioNm/eLOnezVpbihSO8uCDD6pq1aqS7t3IXLdunSSpdu3aKlWqlFXnqFq1quUp9pUrV6Y7vdbKlSt1584dSVKjRo0yPHdMTIwaNGig9u3bp7sYbtWqVVWsWDFJUnR0dLJ9GU3nknR++pCQkFTbbN++PcsjYZo0aWL5/y+//JJu2zFjxmjcuHEaNGiQTQtnS/e+p88884ykezfrf/rpJ6uOGzt2rOXmbYsWLZIVVRKfur9+/Xqy9UvuFx4ebpkurFChQlZPb2atjIpaiV/jmzdv6vfff0+z3dmzZzV8+HANHz5cI0aMsBSqHBWnNRIXc07rPWmNxCLk5cuXtW/fPm3atEmS9aOkEj377LOWwui8efO0Z8+eDI+Jjo7W559/btnu3bt3houuJ/ruu+8UGxurbt26WX6uEyWOoLi/eBMTE2MpJGa0dkri17REiRLy8fGxKiYAAABnRZECAAAgEwoXLmz5/99//51qm82bN2vixImWbXssNJ3o+eeftzzlPGXKFAUFBaVoc+fOHQ0cONByw75v3752u769Jd7I3LFjh6WwY+0oCunetE3dunWTdK8w8/HHH6daFDpx4oRGjx4tSfL29rasgZEeLy8vyw3yvXv3Wooo99u9e7dlUd8aNWqkOEeiiIiIFMcmHQmS2lPi165d05gxYzKMNSM1atRQ/fr1Jd0rekyePDnVdtOnT7fcBA4ICEh3bv20fPTRR5Ybtf/5z380YcKENIsssbGxGjNmjObOnStJKlCggD7++ONkbbp37265kT9ixAidOXMmxXliYmL0wQcfWBb67tGjh9U3pa2V9HuZWjGse/fulmt+/fXXqf5sRkZG6oMPPrA8bZ/43nVknNZIfB9fvHgx01ONPf7445aFt0eNGqVbt26pcOHCeuyxx2w6j6enp7788ku5ubkpLi5Or7/+umVURmrCwsL05ptv6siRI5ZcXn75ZauudezYMa1Zs0YFCxZUnz59UuyvXr26JGnbtm3Jfq9v2bJF8fHx8vDwSLc4Fh8fr5MnT0qSatasaVVMAAAAzow1KQAAADKhTZs2WrlypSTp22+/VWhoqBo3bqx8+fIpJCRE69ats0xvkijx6X17KFasmAYPHqxhw4bpzp076tSpk3r06KFHH31U+fLl0+HDhzVz5kzL07pt27bNcCFsI7Vu3Vr/+c9/FBMTo6CgILm5uVkKF9bq27evNm3apCNHjmjNmjU6ffq0unXrJn9/f929e1dbtmzRvHnzLPPrf/zxxypfvrxV5+7fv782b96suLg4vfvuu3ruuefUrFkzPfDAA7p586Z2796t+fPnS5J8fHz02muvJTs+6ZPY3377rZ577jm5u7tbRpA888wz+vHHHxUXF6fZs2crIiJCbdu2VZ48eXTgwAHNmjVLV69e1YMPPphs+q7M+PLLL/XCCy/ozp07+vbbb/Xf//5XL7zwgkqXLq2rV69q5cqVWr9+vaR7N4aHDx+eqYV9ixQpoilTpqhXr166ffu2fvjhBy1btkzt27dXnTp1VKhQId25c0eHDh3SkiVLLKOTfH19NX78+BRrDjz44IN6//33NWrUKIWGhuqFF15Qt27d1LBhQ3l7eysoKEgzZ87U6dOnJd1b1Pj111/P0tcqNUm/l7/++qv8/f3l4eGhgIAA+fj4qHz58ho0aJDGjh2rmzdvqnPnznr55Zf1xBNPyMvLSydPntTMmTMVHBws6d5NamuKZVmJc/r06SpYsKASEhJUt25dq7+fDRo00K+//iqz2ayDBw8mG4ljLS8vLzVv3lwrV660TMX21FNPZWrkSMOGDTVs2DB9/vnnunPnjgYMGKBatWqpbdu2CggIkLe3t65du6Zdu3Zp6dKllmJV+fLlNWHCBKsXzB43bpzMZrN69+6dbD2URG3atNHYsWN15coVvf766+rTp4+uXLmiUaNGSZICAwNTPS7RqVOnFBkZKUk2F2sAAACcEUUKAACATGjZsqVefPFFLViwQLGxsZoxY4ZmzJiRol2HDh0UHh6ujRs3KiQkRJGRkXab2qNLly6KiYnRN998o+joaE2dOlVTp05Ntd0nn3ySqRvNjlKuXDkFBATo+PHjku5NZ2Xros5eXl6aNm2a3n33XW3btk1BQUEaOnRoina+vr76/PPPbSraVK1aVaNGjdInn3yi6OhoLVmyREuWLEnRrlChQho7dmyKdRBatmypH3/8UfHx8ZZFoUuVKmWZ+qZcuXL6+OOP9eWXXyohISHF+d3c3PTuu+/q5s2bmj59utVxp6Z8+fKaO3eu3nrrLYWEhGjr1q3aunVrinYFCxbU2LFjs/Skd40aNbRkyRJ99NFH2rdvn0JCQpKNLrpfQECARo4cmeaC07169ZLJZNLYsWMVERGhyZMnpzoa5Nlnn9UXX3xh91EUklSqVClVq1ZNR48e1alTpyyjIGbNmmW54dynTx+ZTCZ9++23ioqK0vTp01P9vtWrV08//PCDTWszWKtGjRoqUaKELl++rN27d6tLly6SpD/++MPqRaefeOIJeXt7KyoqStu2bctUkUK6V4RMLOpKtk/1lNSLL76okiVLatiwYQoJCdHBgwfTXV8lMDBQw4YNk5+fn1Xn3717t7Zu3arixYure/fuqbYpVqyYPvroI33xxRfavn27tm/fbtlXunRpDRkyJN1rJP68ubu7q1WrVlbFBQAA4MwoUgAAAGTS8OHD9dhjj2nx4sU6evSobt++rTx58qhEiRKqWbOmOnXqpHr16mnRokXauHGjYmNjtWHDBrVr185uMfTo0UNPPPGE5syZo+3bt+vSpUuSpAceeED169dXly5dLFOT5HStW7e2FClsmeopqUKFCmn69On6888/tXz5ch08eFDXr19Xvnz5VKZMGbVs2VIvvPBCphaqffbZZ1W7dm3Nnz9fO3fu1Llz5xQVFaX8+fOrfPnyatq0qbp06WJZGyOpgIAATZo0SZMmTVJQUJASEhLk4eGRrGjVtWtX1a5dWzNnztTu3bt1/fp1FSpUSPXq1VOPHj1Up04dy1RVWRUQEKA1a9Zo8eLF2rhxo4KCghQeHi4vLy+VL19ezZo1U9euXTOcV98a5cqV0y+//KKdO3dq7dq1OnTokC5cuKCIiAh5eXmpWLFiqlmzptq0aaPmzZtnuJZCz5491bJlS82dO1fbt29XSEiIEhISVKJECdWpU0cdO3a0rNmSXSZPnqwxY8Zo+/btunXrlgoVKmRZSyNR7969FRgYqHnz5mn79u26ePGiIiMjLetktGvXTk8//bRd1o5Ijbe3t2bMmKFvvvlG+/btU0REhIoUKaLLly9bXaTIly+fnnzySa1atUobN27Uhx9+mKlYHn/8ceXNm1cREREqWrSo1YtXp+WJJ57Q2rVrtX79em3atEnHjh3TlStXFBUVJV9fX5UuXVr16tVThw4dbF6TZNy4cZKkt956S97e3mm2e/nll1W8eHFNmjRJJ0+eVL58+dSiRQsNHDgwxRoW99u4caOke+uXZNQWAADAFZjMSecgAAAAAADg/x0/ftwy6mjRokWsoZBFFy5c0JNPPimz2ay5c+da1ogBAABwZSycDQAAAABIVUBAgFq0aCFJ+uWXXwyOJvdLXOOjfv36FCgAAAD+H0UKAAAAAECa+vXrJ0n6/fffU0xrBevdvXtXixYtkvS/rykAAAAoUgAAAAAA0lGjRg116NBB0dHR+umnn4wOJ9eaO3eubt68qebNm6tRo0ZGhwMAAJBjsCYFAAAAACBdt2/f1rPPPqsbN25o9erVKl26tNEh5So3b95UYGCgJGnVqlUsmA0AAJAEIykAAAAAAOnKnz+/vv76a0VHR2v06NFGh5PrfP/997p586aGDh1KgQIAAOA+jKQAAAAAAAAAAACGYCQFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGMLD6AAA5BwXLlxQy5YtU91nMplUsGBBlSxZUk888YR69uwpPz8/B0eYc/3666/6/PPP9eWXX6pTp05GhwMAMBD9qfUuX76s6dOna8uWLbp48aIkqUyZMmrWrJleffVVFSlSxOAIAQBGok+1XnBwsKZOnart27fr2rVrKliwoGrVqqWuXbuqcePGRocHAOkymc1ms9FBAMgZkn4A9Pf3V758+Sz74uPjFR4ergsXLiguLk6FCxfWrFmzVLlyZaPCzTEOHTqknj17KiIigiIFAID+1Ep79uzRm2++qVu3bsnd3V0PPvigEhISdOHCBcXHx6tYsWL6+eefVaVKFaNDBQAYhD7VOlu2bFH//v0VFRUlHx8flStXTmFhYbp69aok6dVXX9WHH35ocJQAkDaKFAAskn4AnD17tho0aJCizY0bN/TRRx/pr7/+Uvny5bVmzRq5ubnuzHG7du3S22+/rfDwcEmiSAEAoD+1wq1btxQYGKiwsDA9/vjj+vrrr1W8eHFJ0vnz5zV48GDt27dPZcqU0erVq5UnTx6DIwYAGIE+NWNhYWFq3bq1wsPD1bZtW33xxRfKnz+/JGnlypX68MMPFR8fr/HjxyswMNDgaAEgda7zWxuAXRQuXFijRo2Sl5eXgoODtXXrVqNDMkR0dLQmTJigXr16WQoUAABYy9X706VLlyosLEzFixfXd999ZylQSFLZsmU1ceJEFSxYUBcuXNDatWsNjBQAkNO5ep+6ePFihYeHq3Tp0ho1apSlQCFJzz77rOUhul9//dWoEAEgQxQpANiscOHCqlSpkiTp1KlTBkfjeGfPnlVgYKB++OEHSdLAgQNVunRpg6MCAOQ2rtyf7tq1S5LUvHnzZFN3JPLz81OdOnUkSYcPH3ZobACA3MeV+9QyZcromWee0csvvywvL68U+xOnv0pc+wkAciIWzgaQKXFxcZKkvHnzprpv1apVWrt2rY4ePaqbN2/Kw8NDxYsXV4MGDdSrVy9VqFAh1eOWLVumRYsW6cyZM0pISFD16tXVp08feXp6qnv37nr00Uc1Z86cDOPbtWuXunfvbnU+zz//vEaNGmVV28uXL+vSpUuqXbu2Pv30U1WvXl2LFi2y+loAACRy1f70zTffVGBgYKrxJ0qclTYhIcHq6wMAXJer9qlPP/20nn766TT3HzlyRJJUrlw5q68NAI5GkQKAzc6dO6dTp07Jzc1Njz/+eLJ9UVFR6tu3r+UJydKlS8vf31/Xr19XcHCwgoODtXLlSs2bN09Vq1a1HBcdHa0BAwZo06ZNku59gMqbN6/27NmjnTt3qlWrVjbFmD9/fj3yyCNWty9fvrzVbUuUKKGpU6eqadOmNsUEAEBSrtyf1qxZUzVr1kxzf1hYmHbv3i1Jevjhh62+PgDANblyn5qWW7duafbs2Vq6dKk8PDzUp0+fLJ0PALITRQoAVomPj9etW7e0f/9+jR49WgkJCXrjjTdSTHP0008/adeuXSpcuLCmTp2a7AbEoUOH1K9fP4WGhmry5MkaP368Zd/EiRO1adMmFSpUSOPHj7csiHblyhW999572rBhg03xVq1aVb/88ksWMk5buXLleAoFAJAp9KfW+eqrrxQZGSkfHx8W+QQApIo+NXXr1q3ThAkTdPbsWcXExKhkyZIaNmyY6tevn+3XBoDMokgBIFUZDUPt06ePBg4cmOL17du3y83NTf3790/xhGTNmjXVpUsXjR8/XidPnrS8fuvWLc2YMUOSNHr0aMuHP0l64IEHNGnSJLVp00ahoaFZyAgAAMejP7Xdjz/+qFWrVkmS+vXrpyJFihgcEQAgJ6BPtc6hQ4eSrcsRHh6uTZs2qV69eqmuAwUAOQFFCgCp8vf3T/YBJiEhQREREZanMWbOnKnIyEh9/PHHcnd3t7T75ZdfFBsbK5PJlOp5fXx8JN0bcpto8+bNiomJUalSpdSsWbMUx+TPn18dOnTQlClT7JQdAACOQX9qmx9++EETJkyQJLVs2ZKpKQAAFvSp1unWrZveeust3blzR9u2bdOYMWP066+/6siRI1qwYIE8PLgVCCDn4TcTgFQNHTo02dMiiWJiYrRs2TKNGDFCc+fOVXx8vIYNG5asjaenp8LDw3XgwAEFBwfr/PnzCg4O1vHjx3Xt2jVJyRfBTHzKo3LlymnGU716dZviP3bsmEaMGGF1+6ZNm+qNN96w6RoAAGSE/tQ6cXFxGj58uBYsWCBJatKkib799ts0bygBAFwPfap1SpQoIUny9fXV888/r1q1aql9+/Y6cuSIVqxYoQ4dOth8TgDIbhQpANjEy8tLL774okJDQzVhwgQtXLhQr7/+ukqWLClJunPnjr766iutXLlSsbGxluM8PT1VrVo1BQQEaMuWLcnOeePGDUn3PkSlxdZhqbdv39a+ffusbs8aEwAAR6I//Z87d+7onXfe0bZt2yRJTz/9tEaPHi0vLy+bzwUAcD30qel76KGH1KpVK61atUq7d++mSAEgR6JIASBTWrZsqQkTJig+Pl7Hjh2zfADs16+fdu3aJW9vb73yyiuqVauWKlWqpHLlysnT01MLFy5M8QEwcXjtnTt30rxeRESETfE1aNBAQUFBNmYFAIBjuXp/evnyZfXp08cyD/hrr72mDz74gBEUAACbuWqfevPmTV24cEGlSpWSn59fqm0SFxPPiWtoAIBEkQJAJiW9eWA2myVJBw4c0K5duyRJU6ZM0WOPPZbiuMuXL6d4zd/fX5KSLVR2vxMnTmQpXgAAciJX7k+vXLmibt266dy5c3J3d9enn36qLl26GB0WACCXctU+tWPHjjp//rzef//9NNdyCgkJkXRv0W8AyIncjA4AQO60efNmSfc+CCbOxXnhwgXL/tTm54yMjNTvv/8uSYqPj7e83qxZM3l6eurSpUvaunVriuOio6O1fPlye4YPAECO4Kr9aUxMjN58802dO3dOnp6e+v777ylQAACyxFX71MaNG0uSFi9enGw6q0QXLlzQH3/8IUlq0aKFQ2MDAGtRpABgE7PZrPXr12vy5MmSpMDAQMvCXA899JCl3cSJE5N9QPrnn3/Up08fBQcHS7r3YTBR0aJF9fLLL0uSPvroo2TzdN64cUMDBw5M9uESAIDcztX7059++klHjx6VJH3++edq1aqVwREBAHIrV+9Te/fuLW9vbwUHB+u9995TWFiYZd+xY8f02muvKSoqSvXr11fLli0NjBQA0mYyJ46BA+DyLly4YPnQ4u/vn2IhsLi4OIWEhOj69euSpGrVqmnatGkqXLiwpc3AgQO1Zs0aSVKhQoVUpkwZyxyZ0r2nPBIXxty7d6/lGlFRUerTp492794tSSpfvrzy5s2rU6dOKS4uTlWrVtWRI0fUsGFDzZw5M/u+CJnUokULhYSE6Msvv1SnTp2MDgcAYCD60/TFxMSoSZMmCg8Pl4eHh2rWrJlu+6ZNm+qNN95wUHQAgJyEPtU6mzZt0qBBgxQZGSkvLy9VqFBB0dHRlgJM7dq1NWnSpDTXrAAAo7EmBYBUpTb3Zp48eeTn56fmzZvrqaeeUrt27eThkfzXyLhx49SoUSMtXLhQ586dU1BQkAoXLqzmzZvrpZdeUrNmzdS8eXNdvHhRf/75p9q1aydJ8vb21vTp0zV37lytWLFCwcHBMplMqlevnt58803t379fR44ckbe3t0PyBwDAHuhPUzp58qTCw8Ml3bu5lPTp1NSUK1fOEWEBAHI4+tS0NW/eXL/99pumTZumrVu36vTp0/L29lbdunXVrl07vfDCC/L09DQ6TABIEyMpAOQKo0eP1vTp09W5c2eNGDHC6HAAAMiV6E8BALAP+lQAsB/WpABguDNnzqhZs2bq2bOnYmJiUuw3m83asmWLJKlq1aqODg8AgFyB/hQAAPugTwUAx6JIAcBwZcuWVXR0tHbs2KGxY8cqKirKsu/27dsaNmyYTp06JT8/P7Vu3drASAEAyLnoTwEAsA/6VABwLKZ7ApAjrF27Vu+++67i4+OVN29ePfjgg4qPj9e5c+cUFRWlAgUKaMKECXrssceMDhUAgByL/hQAAPugTwUAx6FIASDHOH36tGbOnKm9e/fq0qVLkqSSJUuqadOmeuWVV1SqVCmDIwQAIOejPwUAwD7oUwHAMShSAAAAAAAAAAAAQ+TKNSmCg4NVu3ZtffXVV2m22b59u3r16qWGDRuqTp06euGFF7Ro0SJRkwEAAAAAAAAAIGfwMDoAW127dk39+vVTZGRkmm3mzZun4cOHy9PTUw0aNJCnp6d27typoUOHas+ePRo9erTd4jlz5oyioqLk7e2tChUq2O28AAC4GvpUAADsgz4VAADkJrmqSHH8+HENGDBAZ8+eTbPN6dOn9eWXX6pAgQKaM2eOqlSpIkm6ePGievTooeXLl6tp06Z6+umn7RJTVFSU7t69a5dzAQDgyuhTAQCwD/pUAACQm+SK6Z7Cw8P1zTffqHPnzjp79qzKlCmTZtuffvpJCQkJeu211ywFCkkqVaqUPvvsM0nS9OnTsz1mAAAAAAAAAACQvlxRpJg9e7Z+/vln+fn5adKkSWrfvn2abf/66y9J0lNPPZViX6NGjVSgQAEdPnxY165dy6ZoAQAAAAAAAACANXJFkaJEiRL68MMPtW7dOrVo0SLNdteuXVNYWJjy5MmT6ryb7u7ueuihhyRJQUFB2RYvAAAAAAAAAADIWK5Yk6JTp05Wtbty5YokqVixYjKZTKm2KVasmCQpNDTUPsH9P7PZrPj4eLueEwCAnMDd3d2h16NPBQA4K/pUAACyztH9KbJfrihSWCsyMlKS5OPjk2abPHnySJIiIiLsfu0DBw7Y9ZwAAOQEdevWdej16FMBAM6KPhUAgKxzdH+K7Jcrpnuylpub9emYzeZsjAQAAAAAAAAAAGTEqUZS5M2bV5IUFRWVZpvo6GhJkq+vr12v7ePjo8qVK9v1nAAAuCL6VAAA7IM+FQAA5AZOVaR44IEHJN1bQDstV69elSQVL17crtc2mUzMhwYAgB3QpwIAYB/0qQAAIDdwqumeChUqpAceeECRkZE6f/58iv3x8fE6ffq0JMnf39/R4QEAAAAAAAAAgCScqkghSc2aNZMkrV+/PsW+bdu26fbt26pWrZrdR1IAAAAAAAAAAADbOF2R4uWXX5aHh4cmTZqkQ4cOWV6/ePGiRowYIUl64403jAoPAAAAAAAAAAD8P6dak0KSqlSpokGDBumbb75Rly5d9OijjypPnjzatWuX7t69q5deeklPPfWU0WECAAAAAAAAAODynK5IIUm9e/dWhQoVNHPmTB08eFAmk0kVK1ZU165d9dxzzxkdHgAAAAAAAAAAkGQym81mo4PIzY4fP667d+/K19dXAQEBRocDAECuRZ8KAIB90KcCAIDcxClHUgAAAACAM4uLi9Ps2bN1/PhxBQQEqHv37vLw4M87AAAA5D58igUAAACAXGbOnDmaN2+eJGnfvn0ymUzq1auXwVEBAAAAtnMzOgAAAAAAgG127tyZ7jYAAACQW1CkAAAAAIBcJjo6Ot1tAAAAILegSAEAAAAAAAAAAAzBmhQAAAAAgFSxQDcAAACyG58uAQBwEG70AAByGxboBgAAQHZjuicAABwk8UbPvn37NG/ePM2ZM8fokAAASBcLdAMAACC78fgmAAAOktqNHp5GBQDc7/ONCxUTH5dum9CIWym2h6yfn+4xXu4e+qJlZ5tiYYFuAAAAZDeKFAAAOAg3egAA1oiJj8uwSGGWOcV2Rsd4urtnOTYAAADA3ihSAAAcinUZAAAAAAAAkIi7QgAAh2IBTgAAjBc68wuZY2MybBd/MzTF9tWfPkmzvcnTS8V6fp7l+AAAAOA6KFIAABzKGddlsGbucMn2+cMzM3c4AADWMMfGSHGx1rRMuZ3Ocfe3BgAAADJCkQIA4FDOuC6DNXOHS5mbP9xWTKcFIDvwuyXncbvv63//tr14ubuluw0AAABkFX9ZAADgII64ocR0WgCyA79bcp4CD5VR5NWwZNvZoU6Jggq+GZlsGwAAZ8LDGIDx+IkDANgFUx5lzBE3lJxxOi0AxuN3S85TomEtSVLEpVDlLVnMsm1vHaqWkiSdCotQJb+8lm0AAJwFD2MAxqNIAQCwi5w05VFOZesNJU93d5uv4YzTaQEwHr9bch6Tu5tKNqmT7dfxcDOpc/XS2X4dAACMwsMYgPEoUgAAHMpRc2jnRI66oQQAAAAAsI4jHsZgSikgffw0AAAcylFzaDub0JlfyBwbk2G7+JuhKbav/vRJuseYPL1UrOfnWYoPAAAAAJA6ppQC0keRAgDgUI6aQ9vZmGNjpLhYa1qm3M7guPuPAAAAAADYD1NKAemjSAEAcChHTHnkykNpvdzd0t0GACC3c+V+HgCQO7G+F5A+PskBcGr8EeuaXHkobZ0SBRV8MzLZNgAAzsRR/TyfIwEAAByDT1gAnJor36x2Za48lLZD1VKSpFNhEarkl9eyDQCAs3BUP8/nSAAAAMdgDggATi21P2Lh/Fx5KK2Hm0mdq5fWJ0/4q3P10vJwMxkdEgAAduWofp7PkQAAAI5BkQKAU3Plm9UAAADIPD5HAgAAOAbTPQEAAAC5GPPmAwAAAMjN+OsFAAAAyMWYNx8AAABAbkaRAgCcFE/WAoBrcNQiwq6K/hQAAPugTwWQFn4TAICT4slaAHANzJufvehPAQCwD/rUnMcRhSOKU7AG7wgAuVLozC9kjo3JsF38zdAU21d/+iTN9iZPLxXr+XmW48sJnOXJWk93d6NDAACnZk2famt/KjlPn+os/Sn+h8+RAGAM+tScxxGFI4pTsIab0QEAQGaYY2OkuNiM/8l8/5HptrfmD9bcgidrAQDWsKpPtbE/daY+lf7U+fA5EgCMQZ+a86RWOMqN10Dux0gKAE7Ny90t3W3kLtn15KPE048AAOQEn29cqJj4uHTbhEbcSrE9ZP38dI/J65lHQ5u/kOX4AMBZMSWPa3JE4YjiFKzBbxu4DDpc11SnREEF34xMto3cy/LkY8YtU25ncNz9RwAAAMeLiY/LsEhhvq/XNsuc4TFMHwkgp8ip9yayOiUP00cCyArjfwsCDsIceK6pQ9VSkqRTYRGq5JfXsg0AAAAAgKPl1HsTWV0vwpoHyrzcTSm3eZgMgChSwIW48gJNOfVJDUfwcDOpc/XSRocBAACygSt/xkH2Y9pQANkhp96bcMSUPM4604ErjyJx5dxhX3yCh8tw5TnwcuqTGsic7FqXgQ8BAIDchs84yE7OejMNgLFc+d6Es850YN20xI6dktiaNZ6krK/zlBNzR+5EkQJwATn1SQ1kTnaty8CHAABAbpPVzzg8/Yf0OOvNNAAwCjMdOI41azxJjlnniZGJsAZFCsAF5NQnNZiiAQAAZEVWP+Pw9B/Sw800AMjdHDWaAOljZCKswd1AAIZx5SkaKNBkL57UAJAd+N0NAACQe+Sk0QQ5ldt9n2Xv37YHRibCGvxVBcAwrjwNlSsXaByBJzUAZAd+d7smCt85jyNuqADIXs5Y+M+utQMlphFE9inwUBlFXg1Ltm1vjEyENXJ3DwCIRYRzs5w6DZUjOKJA48o3VXhSA0B2cOXiuiuj8J3zOOKGCoDs5YyF/+xaOzC1IwB7KdGwliQp4lKo8pYsZtkGHI0iBXI9FhFGbuSIAo0r31ThSQ0A2cGVi+uujMJ3zsMNFSD3o/APV5NTHyI0ubupZJM6RocBUKQAjJTVIa6MIkF6uKkCALCXnPqHtSNQ+M55uKECR3DG6YhyEgr/cDWu/BAhYA16WMBAWR3iyigSpIebKgAAe+EPawCuxhmnIwJgHB4iBNJHkQIwkLMOcf1840LFxMdl2C404laK7SHr56fZPq9nHg1t/kKW4wMAOB9HjE505YUu+cMagKtx1r/VkD5nHEGTXX+fS/yNbgseIgTSl7t/0wI2yInTFDjrENeY+DirPgSZ7xuzYZY53eM83d2zHFt2o0ADAMZwzOhExy90aU2/4oibCvxhDcDVOOvfakifM46gya6/z6Xc8Tc6gNyBIgVcBtMUwBFcuUADAEZy1iderelXuKkAAMgpsmvdRMkxoxMd8XkiJz5ACQBGo0gBl+HK0xTk1A9BbvcNm71/25m5cu4AkB0c8cRrTu1PAQDIKbJr3cTUjsgOjvg8wQOUAJASd8XgMlx5moKc+iGowENlFHk1LNm2q3Dl3AEgt8qp/amzyilTXQEAYE+u/AAlAKSFIgXgAnLqh6ASDWtJkiIuhSpvyWKWbVfgyrkDQG6VU/tTZ8VUVwAAZ+TKD1ACQFooUgAuIKd+CDK5u6lkkzpGh2EIV84dAHKrnNqfAgCsZ80oLcn2kVpe7h76omXnLMeXE8TFxWn27Nk6fvy4AgIC1L17d3kwPS2cGNMxA8bjpw4AAAAAALgEa0ZpSZkbqeUs5syZo3nz5kmS9u3bJ5PJZPfFo4GchOmYAeNRpACyCfMoAwCcEU9XAgBgHzm1T925c2eKbXsXKbzc3dLdtrfsGkHD3+fOgemYAeMZ3/tlow0bNmj27Nk6duyYoqOjVaJECTVt2lRvvvmmihYtanR4cHLMowwAcEaOfroyu24qSNxYAAAYK6eOWIiOjk532x7qlCio4JuRybazU3aNoHGmv89decojpmMGjOe0v3HGjx+viRMnymQy6ZFHHlGhQoV06NAhzZ07V2vXrtX8+fNVrlw5o8MEAADIVRzxdGVS2TkthzPdWAAA2Jcjbtg6uk+1tvB/PeZuim17jyboULWUJOlUWIQq+eW1bMM4THkEwEhOWaQ4deqUfvzxR/n6+mratGl65JFHJN2r/n/wwQdat26dvvrqK02dOtXgSAEAAHIXRzxdCQCA0Rxxw9bRfaq1hf/8FUrr7pXrybbtPZrAw82kztVL23wcsg9THgEwklMWKbZu3Sqz2awnn3zSUqCQpDx58mjQoEFat26ddu/ebWCEAAAAgH248vQMAJBdbL1h60yj81z5ZrUr96lMeQTASE7529bN7d6CS5cvX06xLyzs3pMQhQoVcmRIQKpc+QMQAACwD1eenoHPUgCyiyvfsHXl3F25TwUAIznlp/gmTZrIzc1Nu3fv1tdff62ePXuqcOHCOnDggIYNGyZJ6tOnj7FBAuIDEAAA9uLKN6td+YlXPksByIlCZ34hc2xMhu3ib4am2L760yfpHmPy9FKxnp9nKT6kzZX7VAAwklP+9VaxYkWNHDlSw4cP16xZszRr1izLvsKFC2vChAl66qmn7HpNs9ms+Ph4u54T6XN34HBaW763tsSVGz4AZVfuuQG5W8fZcpesz99Vcnd0nvSpjpf4PbbmpkpWb6hk189XbrhZnV2/W3PDE698lrKOs/Ur5J4SfapxHPm1N8fGSHGx1rRMuZ3BcUmP4DNrxmzN3Zn6VL7vzoXck3PGPF2dUxYpJKlu3bpq3ry51q5dqxo1aqhQoUI6evSorl69qp9++kkBAQEqW7as3a4XGRmpAwcO2O18SJ+bm5vq1HHcB4dDhw4pISEhw3a2xpUbPgBlV+65Abm7Zu6Sdfm7Uu5169Z1aAz0qY6V9L1s3U2VrN1Qya6fr9xws9qVf7fyWYrve3pcKXf6VGPk1PeYl7tbutsZ4TMruaeF3MndmeSEv1GR/ZyySHHkyBG9+uqr8vHx0aJFi1S1alVJUmxsrP7zn/9o+vTp6tGjh37//Xf5+PgYHC3i4+O1YcMGnT9/XmXLllWrVq2oiAIAkENl9YZKdskNN6sBAEiqTomCCr4ZmWwbAABX5JRFii+//FLh4eEaOXKkpUAhSZ6enho8eLAOHjyovXv3aunSperatatdrunj46PKlSvb5VyuZubMmfrzzz8lSadOnVKJEiXUs2dPY4O6T82aNY0OwTDk7ppcOXfJtfPPCbnTp+ZsWb2hkhPeY0Yhd9dE7q4pp+ROn5qzdahaSpJ0KixClfzyWratlVPeZ0Ygd9dE7q7JlXN3JU5XpIiKitKBAwfk7u6uJk2apNhvMpnUtGlT7d27V0eOHLHbdU0mE0//Z9Lu3btTbL/22msGRZM6V/7ekrtrcuXcJdfOPyfkTp+as2X1hoorf2/J3TWRu2vKKbnTp+ZsHm4mda5eOtPHu/L3ltxdE7m7JlfO3ZU4XZHi9u3bMpvN6X4YS3w9NtaahayQ3aKjo9PdBgAA1omLi9Ps2bN1/PhxBQQEqHv37vLwsO/HvazeUAEAAAAAICmnK1IUKVJEhQoV0s2bN7V582a1bNkyRZtt27ZJUrKpoAAAAHK7OXPmaN68eZKkffv2yWQyqVevXgZHBQAAAABA2nLGSod25Obmpi5dukiShg8frpMnT1r2xcfH64cfftD27dtVsGBBPf/880aFCQAAYHc7d+5MdxsAAAAAgJzG6UZSSNJbb72lEydOaNOmTXruuef0yCOPqGDBgjpx4oRCQkLk6+ur77//XoULFzY6VAAAALthCkUAAAAAQG7jlEUKT09PTZo0SUuXLtXSpUt14sQJRUdHq3jx4urcubP69OmjBx980OgwXcLnGxcqJj4u3TahEbdSbA9ZPz/dY/J65tHQ5i9kOT4AAAAAAAAAgHGcskghSSaTSS+88IJeeIEb2UaKiY/LsEhhljnFdkbHeKaxKDoAAM7ImqK/ROEfAAAAAJD7OG2RArmHm4dHutsAALg6a4r+kmTycE+xTeEfAAAAAJCTOd3C2ch9CjxUJt1tAABgHfpUAAAAAEBuwyPrMFyJhrUkSRGXQpW3ZDHLNgAAsA19KgAAAAAgt6FIAcOZ3N1Uskkdo8MAACDXo08FAAAAAOQ2TPcEAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIagSAEAAAAAAAAAAAxBkQIAAAAAAAAAABiCIgUAAAAAAAAAADAERQoAAAAAAAAAAGAIihQAAAAAAAAAAMAQFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDUKQAAAAAAAAAAACGoEgBAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIagSAEAAAAAAAAAAAxBkQIAAAAAAAAAABiCIgUAAAAAAAAAADAERQoAAAAAAAAAAGAIihQAAAAAAAAAAMAQFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDeBgdAAAAAAAAAAAAjnLixAktXrxYO3bs0JUrVxQdHS0/Pz9VqlRJzZo1U8eOHeXt7W10mHZXuXJlSdKMGTPUqFEjg6P5H6cuUoSFhWnq1KnatGmTLl68KG9vb9WsWVN9+/ZVgwYNjA4PAAAAAAAAAOBA48eP16RJk5SQkKB8+fLpwQcflKenp0JDQ7VlyxZt2bJFP//8syZOnKhq1aoZHa5LcNoixb///qsePXooNDRUpUuXVtOmTXXhwgVt3bpV27Zt0w8//KAnn3zS6DABAAAAAAAAAA6wZMkSTZw4Ub6+vho5cqRatWold3d3y/5///1XH3/8sQ4cOKDXXntNq1evlp+fn4ERuwanXJMiLi5OgwYNUmhoqHr27KkNGzbohx9+0PLly/XVV1/JbDbro48+UkxMjNGhAgAAAAAAAAAcYPLkyZKkwYMHq3Xr1skKFJJUsWJFTZo0SUWKFNGNGzc0e/ZsI8J0OU5ZpNiwYYOCgoJUv359DRkyJNmbrWPHjnr88cdVoEABHTt2zMAoAQAAAAAAAACOEB4ernPnzkmSatWqlWY7Pz8/yww8hw4dckhsrs4pp3tas2aNJKl3796p7v/5558dGQ4AAAAAAAAAwEAeHv+7Fb5p0yZVrVo1zbZvv/22unfvriJFiiR7PS4uTqtWrdLatWt19OhR3bx5Ux4eHipevLgaNGigXr16qUKFCsmO6datm3bv3q0ZM2YoX758mjRpkvbt26fo6GhVqFBBPXr0UPv27WU2m7V48WL98ssvOn36tNzd3VWrVi298847ql27drJztmjRQiEhIVq+fLmuXLmiyZMnKygoSF5eXqpcubK6d+9u81IH165d0/Tp0/XXX38pJCREbm5ueuihh9S2bVt17dpVefLksel8tnDKIsWRI0ckSbVr19bNmze1evVqnThxQh4eHqpXr54CAwNTDOUBAAAAAAAAADinvHnz6pFHHtG+ffs0YcIEnT9/Xi+88IIeeeSRFPeKixUrpmLFiiV7LSoqSn379tWuXbskSaVLl5a/v7+uX7+u4OBgBQcHa+XKlZo3b16qBZC1a9dqyZIl8vLyUvny5XXx4kUdO3ZMH374oe7evat9+/Zp5cqVKlKkiCpUqKBTp05p27Zt+u9//6tFixapSpUqKc65ZMkSzZkzR15eXqpUqZKuXbumXbt2adeuXerWrZuGDh1q1ddm79696tevn27evClPT0+VL19eZrNZR48e1ZEjR/Tbb7/p559/TvE1sRenK1LExMQoJCREefLk0dGjR/Xee+/pxo0blv3z5s1TtWrVNHnyZBUvXtxu1zWbzYqPj7fb+XI7ZysC2fK9JXfnQe7WcbbcJevzd5XcHZ0nfer/uMp7LDWunLvkfPmTu3XI3XmklTt9qnGc7T0m0adag9ydC7lnzFVyz0qen376qbp27aq7d+9q2bJlWrZsmfLly6e6deuqXr16atCggWrUqCE3t5SrJPz000/atWuXChcurKlTp6pmzZqWfYcOHVK/fv0UGhqqyZMna/z48SmOX7BggQIDA/XVV18pf/78io6OVr9+/bR161aNGDFCnp6eGjNmjJ577jlJUkhIiLp27apLly5p1qxZGjlyZIpzzpkzR40aNdLYsWNVpEgRmc1mLVq0SF988YXmzJmj2rVr65lnnkn3a3LlyhVLgaJz58764IMPVKBAAUnSuXPn9P777+vgwYMaOHCg5s2bZ9PX21pOV6S4c+eOJCkhIUH9+/dXrVq19P7776tChQo6efKkvvrqKx0+fFj9+vXTwoULU33DZUZkZKQOHDhgl3Pldm5ubqpTp47RYdjVoUOHlJCQkGE7cid3Z+HKuUvW5e9KudetW9ehMdCn3uNK77H7uXLuknPmT+7knh5Xyp0+1RjO+B6T6FPJPW3kTu7OxN5/o1atWlWLFi3SZ599pr1790q6dz958+bN2rx5sySpSJEi6tSpk9544w35+PhYjt2+fbvc3NzUv3//ZAUKSapZs6a6dOmi8ePH6+TJk6leu1ChQho1apR8fX0lSXny5FGvXr20detWJSQkqHfv3pYChXRvpEbHjh01YcIEHT16NNVzlipVSj/88IPy5s0rSTKZTOrcubMuXLigKVOm6IcffsiwSDFt2jTdvHlTLVq00IgRI5Lte/DBB/Xjjz8qMDBQe/bs0ebNm9W0adN0z5cZTrdwdkxMjCQpNjZWDz74oH7++WdVr15defPmVZ06dTRjxgwVLVpUhw8f1saNGw2OFgAAAAAAAADgKA8//LDmz5+v5cuXq3///qpTp448PT0t+69fv67JkyerXbt2unz5suX1X375RYcOHdJLL72U6nkTCxpRUVGp7m/QoIGlQJGodOnSlv+ndvM/cSagxAfz79e5c2dLgSKpxBjPnDmj06dPp3psoj/++EOS1K5du1T3Fy1aVI0bN5Z0by2P7OB0IymSVre6du2abEEUScqfP7/atWun6dOna8eOHWrVqpXdrlu5cmW7nAs5z/3VUVdC7q7JlXOXXDv/nJA7fapzywnvMaOQu2sid9eUU3KnT3VuOeV9ZgRyd03k7pqyM/eAgAAFBATo7bffVmRkpPbt26etW7fqt99+0/Xr13Xu3DkNGDBACxYssBzj6emp8PBwHThwQMHBwTp//ryCg4N1/PhxXbt2TZLSHPVSokSJFK8lLY74+fml2H//ve37pfX1KVWqlPLnz6/bt28rODhYDz30UKrtIiIiFBISIkn68ccfNXv27FTbJbbJqOCRWU5XpMiXL5+8vLwUExOjMmXKpNom8fWwsDC7XddkMjnlvG+4x5W/t+Tumlw5d8m1888JudOnOjdX/t6Su2sid9eUU3KnT3Vurvy9JXfXRO6uyVG5+/j4qHHjxmrcuLEGDBigjz/+WL///rsOHDigo0ePqlq1arpz546++uorrVy5UrGxsZZjPT09Va1aNQUEBGjLli3pXiM9JpPJ5rgLFiyY5j5fX1/dvn1bt27dSrNN0hEaaU1TldTt27dtC9BKTlekcHd3V6VKlXT06FFduXIl1TaJVa0iRYo4MjQAAAAAAAAAgAE+++wz7dy5U88//7zefPPNNNt5e3tr+PDhWr9+vWJjY3XmzBlVq1ZN/fr1065du+Tt7a1XXnlFtWrVUqVKlVSuXDl5enpq4cKF6RYpskNkZGSa+xILEOndA09aOFm5cqX8/f3tF5wNnG5NCklq1qyZJGnFihUp9pnNZv3999+SpEcffdSRYQEAAAAAAAAADBAdHa2zZ89a1mBIT758+SxrPfj5+enAgQPatWuXJGnKlCn66KOP1KZNGz388MOWKZuSrl/hKGmNfjh37pwiIiIk3VuDIy0FChRQ0aJFJUn//PNPmu2CgoJ0/PhxhYeHZyHatDllkeKll15SgQIFtH37dk2ePFlms1nSvQLF+PHjdeTIEZUrV07Nmzc3OFIAAAAAAAAAQHZLXBj6yJEjWrp0abptt27dqps3b6pQoUKqVauWLly4YNlXvXr1FO0jIyP1+++/S5Li4+PtGHX6li5dmuoaGL/88oskqXbt2ipZsmS650h84H/u3Lmpnuv27dvq3r272rdvr1mzZmU96FRkS5EiPj5e69ev15gxY/TZZ5/p22+/1fbt27PjUqkqXry4xo0bJ29vb3377bcKDAxU//79FRgYqB9//FGFChXS2LFj5eXl5bCYAAAAAAAAAADGaNy4sQIDAyVJQ4cO1VdffZWs+CDdG22xZMkSDRw4UJI0cOBA5c2bN9nC0xMnTky2JsU///yjPn36KDg4WFL6UzDZ25EjR/Tpp59arpmQkKC5c+dq5syZkqRBgwZleI6+ffvK19dXe/fu1QcffJBsHeeQkBD17dtXN2/eVP78+dW1a9dsycPua1KEhobqtdde06lTpywjGCRp6tSpaty4sSZOnKg8efLY+7IpPPHEE1qxYoUmT56s7du366+//lLRokXVuXNnvf7662kuqg0AAAAAAAAAcD5jx46Vr6+vli9frtmzZ2v27NkqVaqUihQpoujoaAUHBysmJkaenp5677331KVLF0lS1apV1aZNG61Zs0bTp0/X0qVLVaZMGd28edNS6GjcuLG2bdumiIgI3blzR/ny5cv2fPz9/bV48WKtWbNGDz30kC5fvqzQ0FC5ublpyJAheuyxxzI8R7ly5fTdd99p0KBBWrVqldatW6eHH35YsbGxCg4OVlxcnHx9fTV16tRsW+PZ7kWKTz75RKdPn9Yrr7yi+vXrK3/+/Lpy5YoWLlyobdu26dtvv9VHH31k78umqly5cho5cqRDrgUAAAAAAAAAyLm8vLw0atQode3aVatXr9auXbt05coVnThxQj4+PqpQoYKaNGmijh07Jhs9IUnjxo1To0aNtHDhQp07d05BQUEqXLiwmjdvrpdeeknNmjVT8+bNdfHiRf3555+W6aWyU/fu3eXr66vp06fr5MmTKlCggAIDA/Xaa6+pVq1aVp+nadOm+v333zVz5kxt2bJFZ86cUXx8vEqXLq3GjRvr1VdfVdmyZbMtD7sWKe7cuaOtW7eqd+/eevfdd5PtCwwMVIsWLbRq1SqHFSkAAAAAAAAAAEiqRo0aqlGjhk3HuLu7q3PnzurcuXOabTZt2pTitTlz5qTZvkyZMgoKCkpzf4cOHdShQ4d042rbtq3atm2bbptE6V2rZMmSGjJkiIYMGWLVuezJpjUpxo4dq9u3b6e5PyIiQgkJCalOpeTj4yM/P790jwcAAAAAAAAAAK7DpiLFzz//rCeffFIzZ85MtjhIomLFisnPz0/Tp0/XmTNnLK/Hx8dr5syZ+vfff22uUAEAAAAAAAAAAOdkU5Fi5syZKl26tEaNGqXWrVtrxYoVyU/m5qYPPvhAZ8+e1dNPP63HHntMTZs2Va1atTR69GjlyZNHgwcPtmsCAAAAAAAAAAAgd7KpSPHYY49p6dKl+uabb2Q2m/Xhhx/q+eef17Zt2yxtnn/+ef36669q3ry5vL29df36dRUqVEitW7fWwoULVbNmTbsnAQAAAAAAAAAAcp9MLZz97LPPqnXr1po3b54mT56s3r17q2HDhnr//fdVtWpV1apVSz/++KO9YwUAAAAAAAAAwKX9+eefRodgVzaNpEjK09NTPXv21B9//KFXX31Ve/fuVceOHfXee+/pwoUL9owRAAAAAAAAAAA4oUwXKRLly5dPH3zwgdatW6d27dppzZo1atOmjb7++mvduHHDHjECAAAAAAAAAAAnlOUiRaISJUpo1KhRWrp0qR599FHNnj1brVq10pQpUxQdHW2vywAAAAAAAAAAACdhc5EiKChIAwYMUJMmTVS9enU1adJEgwYN0qlTpyRJVapU0bRp0zRjxgyVLVtW3377rVq1aqVFixbJbDbbPQEAAAAAAAAAAJA72VSkOHz4sF566SWtW7dO4eHhKlSokG7evKk1a9aoc+fOOnbsmKVtw4YNtWzZMo0ZM0YeHh767LPP9Oyzz2rjxo12TwIAAAAAAAAAAOQ+NhUpxo0bp6ioKH366ac6ePCgtm7dqkOHDunTTz9VZGSkxo4dm+KYdu3aae3atfrggw8UGhqq/v372y14AAAAAAAAAACQe9lUpDhw4IAefvhhde3aVW5u9w51c3NT165d9fDDD2vfvn2pHufl5aVXX31VGzZs0Kuvvpr1qAEAAAAAAAAAQK5nU5EiT548CgsLU0xMTLLXY2JidOPGDXl7e6d7fIECBfTBBx/YHiUAAAAAAAAAAHA6HrY0btq0qVasWKE33nhDHTt2VOHChRUWFqYFCxYoLCxMHTt2zK44AQAAAAAAAACAk7GpSDFkyBBduHBB27dv144dOyyvm81m1apVSx9++KHdAwQAAAAAAAAAAM7JpiJF4cKFNX/+fG3fvl179+5VaGioChQooLp166pp06aWdSoAAAAAAAAAAEDuERwcrPbt26tTp0765JNPHHZdm4oUiRo1aqRGjRrZOxYAAAAAAAAAALLV5xsXKiY+zugwrOLl7qEvWnbO9utcu3ZN/fr1U2RkZLZf636ZKlIAAAAAAAAAAJAbxcTH5ZoihSMcP35cAwYM0NmzZw25fqbnZ4qKitKiRYuUkJCQZpuPPvpIs2fPVlRUVGYvAwAAAAAAAAAA7Cw8PFzffPONOnfurLNnz6pMmTKGxJGpIsX27dsVGBiozz77TMeOHUu1TXh4uH777TeNHDlSTz31lHbt2pWlQAEAAAAAAAAAgH3Mnj1bP//8s/z8/DRp0iS1b9/ekDhsLlJs3rxZffv21ZUrVyTdW0wjNbdu3VKjRo1kMpl09epV9e7dWzt27MhSsAAAAAAAAAAAIOtKlCihDz/8UOvWrVOLFi0Mi8OmIsWtW7f00UcfKS4uTg0aNNCqVav0zDPPpNq2bNmymjZtmn7//XfVrl1bsbGxGjx4sO7cuWOXwAEAAAAAAAAAQOZ06tRJr776qry9vQ2Nw6YixYIFC3Tjxg01atRI06dPV8WKFTM8pkKFCpo1a5aqVauma9euafHixZkOFgAAAAAAAAAAOA+bihR//fWXTCaTBg8eLHd3d6uPy5Mnj4YOHSqz2ayNGzfaHCQAAAAAAAAAAHA+NhUp/vnnHxUpUkRVqlSx+UJ16tRR0aJFderUKZuPBQAAAAAAAAAAzsemIkVERIRKlCiR6YuVKlWKNSkAAAAAAAAAAIAkG4sUvr6+Cg0NzfTFwsLC5OXllenjAQAAAAAAAACA87CpSFGhQgWFhobqxo0bNl8oLCxMly5dUqlSpWw+FgAAAAAAAAAAOB+bihQNGzaU2WzWrFmzbL7QvHnzFB8fr9q1a9t8LAAAAAAAAAAAcD4etjTu3Lmzfv75Z82YMUP16tVTkyZNrDpu586dmjJlikwmk5577rlMBQoAAAAAAAAAQFZ5udt0W9xQuSnWzLIpw1KlSql///767rvv9NZbb6lnz57q1auXChUqlGr78PBwTZs2TbNmzVJ8fLyefvpp1a9f3x5xAwAAAAAAAABgsy9adjY6BCRhcxnm9ddf18GDB7Vp0yZNnTpV06ZNU0BAgKpUqSI/Pz/Fxsbqxo0bOnXqlI4fP66EhASZzWY9+uijGjVqVHbkAAAAAAAAAAAAsuDtt9/W22+/7fDr2lykMJlMmjRpkqZOnarx48crLi5Ohw8f1pEjR5K1M5vNkiQfHx/169dPvXr1koeH8w9NAQAAAAAAAAAA1sl01aBv37567rnntGTJEu3YsUOnT59WeHi4fHx8VKxYMVWoUEEtW7ZUixYt0pwOCgAAAAAAAAAAuK4sDW144IEH1K9fP/Xr189e8QAAAAAAAAAAABfhZnQAAAAAAAAAAADANdk0kqJZs2ZZvqDJZNKmTZuyfB4AAAAAAAAAAJC72VSkuHz5skwmk2VR7MwwmUyZPhYAAAAAAAAAADiPTK1JYTKZFBAQoDZt2qho0aL2jgkAAAAAAAAAALgAm4oUH3zwgdasWaMjR47o2LFjCgoK0qOPPqqnn35agYGBKlCgQHbFCQAAAAAAAAAAnIxNRYrXXntNr732ms6fP6/Vq1drzZo12rFjh3bu3Knhw4ercePGatu2rVq2bClfX9/sihkAAAAAAAAAADiBTE33VLZsWb3++ut6/fXXdebMGf3+++9as2aN/vrrL23evFl58uRRs2bN1LZtWzVt2lReXl72jhsAAAAAAAAAAORymSpSJFWhQgX1799f/fv318mTJy0Fi7Vr12rdunXKmzevWrZsqaefflpNmjSRu7u7PeIGAAAAAAAAAAC5XJaLFEn5+/vL399fgwYN0rFjxywFi99++00rVqxQgQIFFBgYqOHDh9vzsgAAAAAAAAAAIBdyy64TV61aVR988IH+/PNPffrpp/L19VV4eLgWLVqUXZcEAAAAAAAAAAC5iF1HUiR18OBBy5RPly5dktlsliSVLl06uy4JAAAAAAAAAAByEbsWKQ4cOGApTFy+fNlSmChVqpQCAwPVpk0b1axZ056XBAAAAAAAAAAAmfDbb79p8eLFOnHihCIjI1WkSBE1bNhQffv21UMPPeSQGLJcpNi/f7/Wrl2r9evXJytMlCxZ0lKYqFWrVpYDBQAAAAAAAAAgq0JnfiFzbIzRYVjF5OmlYj0/t/t5zWaz3n//fa1atUqenp6qXr26/Pz8dOLECS1btkxr167VpEmT1LBhQ7tf+36ZKlLs27fPUpi4cuWKpTBRvHhxtW7dWm3atFGdOnXsGigAAAAAAAAAAFlljo2R4mKNDsMq5mw674oVK7Rq1SoVL15c06ZNk7+/vyQpPj5e48eP1+TJk/X+++9rw4YN8vX1zaYo7rGpSPHVV19p/fr1unr1qqUwUaxYMQUGBqp169aqV69etgQJAAAAAAAAAADsY/HixZKk9957z1KgkCR3d3cNHDhQGzdu1KlTp7R9+3Y9+eST2RqLTUWKOXPmyGQyyd3dXY899pjatGmjevXqyc3NTZJ0/vx5q85TtmxZ2yMFAAAAAAAAAABZVqBAAVWsWFF169ZNsc9kMqlChQo6deqUrl69mu2xZGq6p/j4eG3btk3btm2z+ViTyaRjx45l5rIAAAAAAAAAACCLJk6cmOa++Ph4HT16VNK9taezm5utB5jN5iz9S0hIyI48rPLOO++ocuXKWrp0qWExAAAAAAAAAACQU82fP18hISEqXLiwHnvssWy/nk0jKTZu3JhdcWS7RYsWad26dUaHAQAAAAAAAABAjrRjxw6NGTNG0r31Knx8fLL9mjYVKUqXLp1dcWSrM2fO6OuvvzY6DAAAAAAAAAAAcqRNmzZp4MCBiomJ0csvv6xOnTo55Lo2T/eU28TExOi9996Tm5ubqlatanQ4AAAAAAAAAADkKHPmzNFbb72lqKgodevWTZ999pnDru30RYpvv/1WR48e1WeffeaQRT4AAAAAAAAAAMgN4uLi9Nlnn+nLL79UQkKC3nvvPQ0dOlQmk8lhMTh1kWL79u2aMWOG2rZtq+eee87ocAAAAAAAAAAAyBGioqL0+uuva8GCBfL29tZ3332nvn37OjwOm9akyE3CwsI0ePBglShRQsOGDcv265nNZsXHx2f7dXILd3d3o0OwK1u+t+TuPMjdOs6Wu2R9/q6Su6PzpE/9H1d5j6XGlXOXnC9/crcOuTuPtHKnTzWOs73HJPpUa5C7cyH3jLlK7s6YpxHi4+P11ltvaevWrfLz89OUKVNUs2ZNQ2Jx2iLFxx9/rOvXr2vWrFkqUKBAtl8vMjJSBw4cyPbr5AZubm6qU6eO0WHY1aFDh5SQkJBhO3Ind2fhyrlL1uXvSrnXrVvXoTHQp97jSu+x+7ly7pJz5k/u5J4eV8qdPtUYzvgek+hTyT1t5E7uziQn/I3qrCZNmqStW7fK19dXs2fPVqVKlQyLxSmLFPPmzdOmTZvUp08fPfroo0aHAwAAAAAAAABAjhAeHq5p06ZJkooXL64pU6ak2fa5557T448/nq3xOF2R4tSpUxo9erSqVaumAQMGOOy6Pj4+qly5ssOuB8cyaqhTTkDursmVc5dcO/+ckDt9qnPLCe8xo5C7ayJ315RTcqdPdW455X1mBHJ3TeTumrIrd5Onl8zZcmb7M3l62f2cu3fv1t27dyVJwcHBCg4OTrNt9erVKVLYauzYsYqOjpa3t7eGDBmSbN/Ro0clSQsXLtT27dtVv359vfjii3a5rslkYj40J+bK31tyd02unLvk2vnnhNzpU52bK39vyd01kbtryim506c6N1f+3pK7ayJ315RduRfr+Xm2nDe3aNWqlYKCgowOw8LpihSJFaC9e/dq7969qbbZv3+/9u/fLw8PD7sVKQAAAAAAAAAAgG2crkgxZ86cNPf169dPGzdu1MiRI9WhQwcHRgUAAAAAAAAAAO7nZnQAAAAAAAAAAADANVGkAAAAAAAAAAAAhqBIAQAAAAAAAAAADOF0a1Kk58cffzQ6BAAAAAAAAAAA8P8YSQEAAAAAAAAAAAxBkQIAAAAAAAAAABiCIgUAAAAAAAAAADAERQoAAAAAAAAAAGAIihQAAAAAAAAAAMAQFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDUKQAAAAAAAAAAACGoEgBAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCE8jA4A98TFxWn27Nk6fvy4AgIC1L17d3l48O0BAAAAAAAAADgv7oLnEHPmzNG8efMkSfv27ZPJZFKvXr0MjgoAAAAAAAAAgOxDkSKH2LlzZ4ptihQAANjOEaMTGQEJAHAF9KkAAMAR6PlziOjo6HS37YUPgAAAZ+eI0YmMgAQAuAL6VAAA4AgsnO1iEj8A7tu3T/PmzdOcOXOMDgkAALtKbXRibrwGAABGo08FAACOwCP0DvD5xoWKiY9Lt01oxK0U20PWz0/3GC93D33RsrNNsTCtFADA2TlidKKjRkACAGCkrPR3oTO/kDk2JsN2d69cSLF99adP0mxv8vRSsZ6fWx0HAADI+ShSOEBMfFyGRQqTh3uK7YyO8XR3T3d/aripAgBA+qy5qeJ+53qK7fRuqEjcVAEAuBZzbIwUF5thOy93U8rtdI4zZzkyAACQ01CkyCEKPFRGkVfDkm0DAID/sWZkoiRdj7mbYjuj0Yl5PfNoaPMXJFl3U6XOAwUUfONusu2MjuGmCgAgp7C2T7V1xH/S/tRadUoUVPDNyGTbAADAtVCkyCFKNKwlSYq4FKq8JYtZtq1l7VDa+JuhKbYZSgsAyA2sGZkoSfkrlNbdK9eTbdt7dGKHqqUkSafCIlTJL69lGwCA3MDaPtV8X4ndLHO6x2VmtD99KgAAoEiRQ5jc3VSySZ1MH89QWgAA7slq4d8aHm4mda5e2u7nBQAgJ3Hz8Eh32x7oUwEAAEUKF8NQWgCAs8tq4R8AANzDtMQAAMARKFK4GIbSAgAAAACs4YjRiQAAABQpXAxDaQEAAAAA1mB0IgAAcAQ3owMAAAAAAAAAAACuiSIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIagSAEAAAAAAAAAAAxBkQIAAAAAAAAAABjCw+gAstNvv/2mxYsX68SJE4qMjFSRIkXUsGFD9e3bVw899JDR4QEAAAAAAAAA4NKcciSF2WzWe++9p8GDB2v//v2qWLGinnjiCbm7u2vZsmXq0KGDduzYYXSYAAAAAAAAAAC4NKccSbFixQqtWrVKxYsX17Rp0+Tv7y9Jio+P1/jx4zV58mS9//772rBhg3x9fQ2OFgAAAAAAAAAA1+SUIykWL14sSXrvvfcsBQpJcnd318CBA1WpUiVdu3ZN27dvNypEAAAAAAAAAABcnlMWKQoUKKCKFSuqbt26KfaZTCZVqFBBknT16lVHhwYAAAAAAAAAAP6fU073NHHixDT3xcfH6+jRo5KkkiVLOiokAAAAAAAAAABwH6csUqRn/vz5CgkJUeHChfXYY4/Z7bxms1nx8fHJXnN3d7fb+XOC+/NLD7k7D3K3Drk7F2vzd5XcHZ3n/X2qq3ydU0PuzsWVf7eSu3XI3XmklTt9qn258ntMok+1Brk7F3LPmKvk7ox5ujqXKlLs2LFDY8aMkXRvvQofHx+7nTsyMlIHDhywbLu5ualOnTp2O39OcOjQISUkJGTYjtzJ3VmQu2vmLlmXvyvlntr0idkpaZ/qSl/n+5G7a+YuOWf+5E7u6XGl3OlT7cuV32MSfSq5p43cyd2Z5IS/UZH9nHJNitRs2rRJb7zxhmJiYvTyyy+rU6dORocEAAAAAAAAAIBLc4mRFHPmzNHIkSMVHx+vbt266ZNPPrH7NXx8fFS5cmW7nzcnqVmzptEhGIbcXRO5uy5Xzj8n5E6f6tzI3TWRu2sid+M5e5+aU77ORnHl/MndNZG7a3Ll3F2JUxcp4uLiNHz4cC1YsEAmk0nvvfee+vbtmy3XMplMTj8fmrPnlx5yd03k7rpcOf+ckDt9qnMjd9dE7q6J3I3n7H2qM+dmDVfOn9xdE7m7JlfO3ZU4bZEiKipKb731lrZu3Spvb2+NHj1arVu3NjosAAAAAAAAAADw/5yySBEfH28pUPj5+WnKlCkMDQIAAAAAAAAAIIdxyiLFpEmTtHXrVvn6+mr27NmqVKmS0SEBAAAAAAAAAID7OF2RIjw8XNOmTZMkFS9eXFOmTEmz7XPPPafHH3/cUaEBAAAAAAAAAIAknK5IsXv3bt29e1eSFBwcrODg4DTbVq9enSIFAAAAAAAAAAAGcboiRatWrRQUFGR0GAAAAAAAAAAAIANuRgcAAAAAAAAAAABcE0UKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIagSAEAAAAAAAAAAAxBkQIAAAAAAAAAABiCIgUAAAAAAAAAADAERQoAAAAAAAAAAGAIihQAAAAAAAAAAMAQFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDUKQAAAAAAAAAAACGoEgBAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ1CkAAAAAAAAAAAAhqBIAQAAAAAAAAAADEGRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIagSAEAAAAAAAAAAAxBkQIAAAAAAAAAABiCIgUAAAAAAAAAADAERQoAAAAAAAAAAGAIihQAAAAAAAAAAMAQFCkAAAAAAAAAAIAhKFIAAAAAAAAAAABDUKQAAAAAAAAAAACGoEgBAAAAAAAAAAAMQZECAAAAAAAAAAAYgiIFAAAAAAAAAAAwBEUKAAAAAAAAAABgCIoUAAAAAAAAAADAEBQpAAAAAAAAAACAIShSAAAAAAAAAAAAQ3gYHUB2OXPmjCZOnKi9e/fq+vXrKlGihNq0aaO+ffsqb968RocHAAAAAAAAAIDLc8qRFIcOHVKHDh20cuVKFStWTM2aNdPdu3c1efJkvfTSS7p9+7bRIQIAAAAAAAAA4PKcrkgRGxurgQMH6u7duxo1apQWLlyo8ePH648//lCLFi108uRJjRs3zugwAQAAAAAAAABweU5XpPj9998VEhKixo0b6/nnn7e87u3tra+//lq+vr5avHixbt26ZWCUAAAAAAAAAADA6YoUmzZtkiQ99dRTKfYVLlxYDRo0UGxsrLZu3ero0AAAAAAAAAAAQBJOV6Q4efKkJKly5cqp7q9UqZIkKSgoyGExAQAAAAAAAACAlDyMDsDerly5Ikl64IEHUt1frFgxSdLVq1ftel2z2az4+Phkr7m7u0uSvNyz58vs5fa/85o8vWTOhmuYPL0s/78/v/SQO7lnB3K/h9yzR2byd5XcE/N0lPv71Oz+Oks592eM3F0zd8k5fr+Q+z3kbh1Xyd3Z+9Sc8nVOjTPknnjuRDmlTyX3e1wtdynn/syTu/Pn7uj+FNnPZDabs+t3qCECAgKUkJCgHTt2yM/PL8X+hQsX6tNPP1Xr1q31/fffZ/l6Bw4cSPMXha+vb5bPn5PcvXvX6rbk7jzI3Trk7lyszd9Vcvf19ZW3t7cqVKiQrddOq091la9zasjdubjy71Zytw65O4+0cqdPtS9Xfo9J9KnWIHfnQu4Zc5XcHdWfwnGcbiSFu7u7EhISMmxnr9pMetey5QOTsyF310TuroncnZ+j8kyrT3WVr3NqyN11uXL+5O6aXCV3+lTjkLtrInfXRO7Oz1XydCVOV6TImzevbt68qejo6FT3R0VFSbJfZdHT01OxsbFyc3NTnjx57HJOAAByGm9v72y/Bn0qAMAV0KcCAJB1juhP4ThOV6QoXry4bt68qdDQUJUsWTLF/sS1KIoXL26X69WoUcMu5wEAwNXRpwIAYB/0qQAAIDdxMzoAe6tcubIk6dSpU6nu/+eff5K1AwAAAAAAAAAAxnC6IkWzZs0kSevXr0+x78aNG9q1a5fy5Mmjhg0bOjgyAAAAAAAAAACQlNMVKZ588kmVLl1af/31l3799VfL61FRUfrkk0909+5dde7cWX5+fgZGCQAAAAAAAAAATGaz2Wx0EPb23//+V71791ZUVJSqVaumMmXKaP/+/bp69aqqV6+u2bNnK2/evEaHCQAAAAAAAACAS3PKIoUknTx5Uj/88IN2796tu3fvqkyZMmrTpo169eqlfPnyGR0eAAAAAAAAAAAuz2mLFAAAAAAAAAAAIGdzujUpAAAAAAAAAABA7kCRAgAAAAAAAAAAGIIiBQAAAAAAAAAAMARFCgAAAAAAAAAAYAiKFAAAAAAAAAAAwBAUKQAAAAAAAAAAgCEoUgAAAAAAAAAAAENQpAAAAAAAAAAAAIbwMDoAZM6ZM2c0ceJE7d27V9evX1eJEiXUpk0b9e3bV3nz5jU6PLv47bfftHjxYp04cUKRkZEqUqSIGjZsqL59++qhhx5K0X7Pnj2aPn269u/fr9u3b6tYsWJq3ry5+vfvLz8/PwMyyDxrct+1a5e6d+9u1flGjhypDh06ZGfIdmPL9z0iIkJTp07VunXrdOHCBXl6eqpSpUrq2LGjOnXqJJPJZFAWmWNL7rdv39bPP/+sdevWKSQkRAULFlStWrX06quvqm7dugZlkHkJCQlasGCBFi9erH///Vcmk0kVK1ZU+/bt9dJLL8nDI2V3tXr1as2ePVunT59WfHy8qlSpou7duyswMNCADDIvM7knNWnSJH333Xdavny5AgICHBS183CF/lSiT6VPpU91lT6V/pT+1Eiu0KfSn9Kf0p+6Rn8q0afSp8LRTGaz2Wx0ELDNoUOH1KNHD929e1e1atVSiRIltG/fPoWGhsrf31/z589X/vz5jQ4z08xms95//32tWrVKnp6eql69uvz8/HTixAmFhITIx8dHkyZNUsOGDS3HzJw5UyNHjpTJZFKdOnVUqFAhHTp0SNeuXVO5cuW0aNEiFSxY0MCsrGNL7v/++68mTZqU5rkuXLig/fv3y9PTU7/++quqV6/uwExsZ+v3/fbt2+ratauCgoJUqFAh1alTR1FRUdqzZ49iY2MVGBio77//Pld8CLQ19ytXruiVV17RuXPn5Ovrq5o1a0qSDh48qKioKL3//vvq3bu3kSnZbPDgwfrtt9/k7e2tRx55RJ6entq3b59u376tRx99VNOmTZOXl5el/ZgxYzRt2jT5+vqqQYMGiomJ0e7duxUbG6t+/fppwIABBmZjG1tzT2r9+vUaNGiQ4uLi+ACYCc7en0r0qfSp9Kmu1qfSn9KfGsXZ+1T6U/pT+lPX6k8l+lT6VDicGblKTEyMuXnz5mZ/f3/z0qVLLa9HRkaa33jjDbO/v7/5888/Ny5AO1i+fLnZ39/f3KRJE3NQUJDl9bi4OPN//vMfs7+/v7lRo0bmiIgIs9lsNu/fv99cpUoV8yOPPGLeuXOnpf2dO3fMffr0Mfv7+5s//fRTh+eRGbbmnpY7d+6YW7dubfb39zcvWbIku8O2C1tzHz16tNnf39/8yiuvmG/dumVp/88//5gfe+wxs7+/v3n16tUOzyMzbM29R48eZn9/f3OHDh3MISEhlvbnzp0zt2nTxuzv72/evn27w/PIrMT8mzdvniyfsLAw83PPPWf29/c3//TTT5bXt23blmr748ePmxs0aGD29/c3HzhwwKE5ZJatuSc1Y8YMc7Vq1cz+/v5mf39/87FjxxwVtlNwhf7UbKZPpU+lT03kCn0q/Sn9qVFcoU+lP6U/pT+9xxX6U7OZPpU+FUZgTYpc5vfff1dISIgaN26s559/3vK6t7e3vv76a/n6+mrx4sW6deuWgVFmzeLFiyVJ7733nvz9/S2vu7u7a+DAgapUqZKuXbum7du3S5J+/PFHJSQkaMiQIWrQoIGlfd68efXJJ5+oaNGiOn36tGOTyCRbc0/LsGHDdPr0abVv3z7XDKG1NfctW7ZIkvr165fsqayKFSuqU6dOkqTdu3c7KvwssSX3M2fOaMeOHfL09NS3336rUqVKWdqXLVtWX375pSTpm2++cWwSWbBs2TJJ0qBBg5LlU7hwYfXt21eS9Pfff1tenzx5cqrtq1SpooEDB0qSpk+fnt1h24WtuUvS4cOH1b17d40cOVL58+d3mukTHM0V+lOJPlWiT6VPvccV+lT6U/pTo7hCn0p/Sn9Kf3qPK/SnEn2qRJ8Kx6NIkcts2rRJkvTUU0+l2Fe4cGE1aNBAsbGx2rp1q6NDs5sCBQqoYsWKqc5ZaDKZVKFCBUnS1atXdevWLW3btk1FixZN9YNOuXLltO3/2rvzuKjq/Y/jr0F2xcS1VHDBwLVcqFxCWyzTMrNulvnLLfWaS1rZolj3XlPbLG8uaZKpuJVroreyUivNRA13RRRFQBMRQUVEQPj9wWNOIIMyMDAs7+fj0eORc86c+XxnDvP+zuN8v9/z++8sWbKk2Ou2BWvanp8//viDkJAQatWqRWBgYLHVamvWtr1SpUoAnD17Ns/+Fy5cAKBatWrFVK1tWdP2o0ePAnDnnXfi7e2dZ/82bdrg5ubGoUOHOH/+fPEWbiPz5s1j/fr1dO3aNc+2zMxMAJycnABITk5m9+7dODk58dBDD+XZ/9FHH8VkMvHbb78Zzy3NrGm72ZgxYwgNDeWBBx5g7dq1ZeY8L20qQp6CMlWZqkzNqbxnqvJUeWovFSFTlafK0xspT8tvnoIyVZkq9qAbZ5cxERERAPj5+Vncfuedd7JlyxaOHj1Kjx49SrI0m5k9e3a+265fv86hQ4cAuOOOOzhy5AgZGRm0atUKBwcHjhw5wk8//URcXBy1atWiW7duZWr9O2vabklGRoYxSuHNN9+katWqti+ymFjb9i5dunDkyBE+/PBD3Nzc6NSpE+np6axdu5bVq1dTrVo1Y7RKaWdN269evQpAlSpVLO5vMplwcMi+/hwZGUnNmjVtXK3tOTs75xqdYxYZGcnMmTMBjB94kZGRXL9+HS8vL4ujM6pXr07NmjWJj48nOjqahg0bFmvtRWVN283at29Pz549c615LNarCHkKytT8KFOVqeUxU5WnylN7qQiZqjy1THmqPC2PeQrKVGWq2IMuUpQxcXFxANSpU8fi9lq1agE3H8VQli1btozTp0/j6elJ+/btWb9+PQC1a9dmypQpLF68mKwc94KfO3cuQ4cO5fXXX7dXyTZzY9stWbduHcePH8fX15eePXuWcIXFx1LbR4wYQXR0NN99912eG1B17NiR//znP7mmJpZVN7b91KlTAISHh5OcnJynIxgeHs6VK1cASEhIKPF6beGtt94iMjKSgwcP4ubmxvjx43n88ceBW38HQvb3YHx8PPHx8aW+A3ijm7XdbOrUqXaqrnyp6HkKylRlqjK1vGeq8lR5WlIqeqYqT5WnytPynaegTFWmSknQck9ljPkKtaurq8Xt5sdTUlJKrKaS8scff/DRRx8B2esiurm5cfnyZQC+//57li9fzujRo9myZQt//PEHkydPxt3dnXnz5rF48WJ7ll5kltp+o6ysLGONw5EjR2IymUq0xuKSX9tdXFx44oknaNiwIZ6ennTu3Bl/f39cXV3ZtWsXy5YtKxNTKW/GUtubNm1Ky5YtuXTpEm+88UautX3j4uJyTZ9OS0sr8ZqLKjk5mW+//ZYDBw6QlZWFyWQiOjra6NSav9ss/Q2Yubi45Nq3rLhV28W2KnKegjJVmapMLe+ZqjxVnpakipypylPlqfK0fOcpKFOVqVJSdJGijDGvcXgrOUdqlAdbtmxh+PDhpKWl8cILLxhTJK9duwbApUuXGDt2LCNHjqRu3bpUr16dZ5991phWOmvWLDIyMuxWf1Hk1/Yb/fbbbxw/fhwfHx+6detWwlUWj5u1/bPPPmPEiBE0b96cTZs2ERQUxNKlS9mwYQM+Pj4sWLCAadOm2bH6orlZ2z/++GNq1qzJ5s2b6dq1Ky+99BIDBw7kscce4+rVq3Tq1AnIu05kWeDs7My2bdsICwtj0aJFeHt7s3TpUoYNG0ZWVlaBvwOBMvcD4FZtF9uqqHkKylRlqjK1ImSq8lR5WpIqaqYqT5WnytPyn6egTFWmSknRRYoyxry+nbnjc6PU1FQA3N3dS6ym4rZ48WJGjhxJamoqL774Iu+++66xzdxOBwcHXnzxxTzP7dGjB56eniQlJXHkyJESq9lWbtb2G23YsAHIXhuwPIxQuVnbT5w4wdy5c7n99tuZOnVqrnUfvby8mD59Og4ODixevJikpCQ7VF80t/rcGzduzJo1a3juuedwcXEhNDSU06dP079/f1auXGms9+nh4WGP8ovE2dmZWrVqUblyZdq3b8+CBQuoVasWu3fv5tdffzU+a/N3nSXm78ey9j14q7aLbVXEPAVlqjJVmVpRMlV5qjwtSRUxU5WnylPlacXIU1CmKlOlpOieFGVM7dq1SUpKIj4+3uKNqczrfNauXbukS7O5jIwMJk2axDfffIPJZOL1119n2LBhufapXr06kL2+n3n63I3q169PYmIiFy5cKPaabaUgbc8pLS2NLVu24ODgUObX+SxI23fu3ElmZib+/v4Wp1Q2btwYb29voqKiOHbsGPfcc09JlV8k1nzuderUYdKkSRa3RUZGAtnnflnn6elJly5dWLVqFQcPHuTBBx8EID4+Pt/nlJfvwRvb/sADD9i7pHKlIuUpKFOVqcrUip6pylPlaXGqSJmqPFWeKk8rdp6CMlWZKsVFFynKGD8/PyIiIjh27Bh33XVXnu3Hjx839ivLUlNTGTlyJNu2bcPV1ZUPP/yQxx57LM9+5nYmJiaSlpaGs7Nznn3Onz8PQI0aNYq3aBspaNtz+vPPP7l8+TL+/v43vVlTaVfQtpvXuLzZVFFHx+yvt/T09OIp1sYK2vbMzEz279/P5cuXCQgIyLP91KlTnDlzhqpVq5aJG3KlpaUxbdo0zp49y8cff2zxh5z57zojI4MmTZrg6OhITEwM165dy7P/hQsXSEhIwM3NDW9v7xJpQ2FZ23axrYqSp6BMVaYqUytCpipPlaf2VFEyVXmqPFWelv88BWWqMlXsRcs9lTHmq5Q//vhjnm2JiYmEhobi4uJChw4dSrgy27l+/boRhNWrV2fx4sX5doB8fX2pV68eaWlp/PDDD3m2h4eHc/bsWapVq4avr29xl15k1rQ9p3379gHQrl274i6x2FjTdh8fHwC2bdtmcVp5bGwsUVFRODg40LRp02Kt2xasabuDgwOvvPIKQ4YM4ezZs3m2L126FIDu3bsbU2pLM2dnZ3744Qc2btzIli1b8mxPS0tj+/btALRq1QoXFxfat29vjMy60caNG8nKyqJz585WrQ1qD9a2XWyrIuQpKFOVqcrUipKpylPlqT1VhExVnipPlacVI09BmapMFXsp/d8OkkvXrl2pV68ev/zyC19//bXxeGpqKoGBgaSkpNCnTx9jimlZNGfOHLZt24a7uzvBwcEWR+OYmUwmhgwZAsAHH3zAoUOHjG3x8fEEBgaSlZVFv379LI5gKW2saXtOBw4cAMp2SFjT9oCAALy9vYmPj2fChAm51n6Mi4tj3LhxZGRk0LNnzzLxt2Dt5/7oo48C2ed8zlE43333HUuWLMHFxYURI0YUa8229MILLwAwdepUTp06ZTyekpLCxIkTiYqKwtfX1/gB3L9/fyC7/Tn3Dw8P57PPPgO46dTz0sTatovtVIQ8BWWqMlWZWpEyVXmqPLWXipCpylPlqfK04uQpKFNBmSolz5Sl27GXObt27WLIkCGkpqbSokUL6tevz549ezh37hwtW7YkODg4102aypKLFy/ywAMPkJKSQsOGDW/aoenVqxcBAQFkZWURGBjI6tWrcXBwwN/fHxcXF/bu3cvly5fp0KED8+bNK/UdwMK0Pee/w8PD+eabb2jdunUJVGtbhWl7eHg4gwcPJiEhgWrVqtG2bVtSUlLYv38/KSkp3H333Xz11VdUqVKlBFtivcK0PTk5mWeeeYaoqCjq169P8+bNOX36NIcOHcLZ2ZmZM2eWqQ5Deno6o0ePZsuWLTg5OdGuXTtcXFw4cOAAFy5cwMvLiwULFuDl5WU85z//+Q/Lli0zRq1cv36d0NBQ0tPTb7k+bmlSmLbf6KGHHuL06dN8++23NGvWrASrL/vKc56CMlWZqkytaJmqPFWe2lN5zlTlqfJUeVqx8hSUqcpUsQfdk6IMuueee1i5ciWzZs1i586dHD9+nPr169OnTx8GDRpUZjt/kH2zqZSUFACioqKIiorKd9+WLVsSEBCAyWRi6tSpdO7cmWXLlnH48GEyMjJo0KABTz/9NP369TPWfizNCtN2M/MN1zw8PIq1xuJSmLY3bdqUkJAQ5s+fz+bNm9m2bRuVKlWicePG9OzZs8yMTCpM26tUqcKyZcuYMWMGmzdvZsuWLdSpU4fevXszdOhQY6pxWeHk5MTnn3/OihUrWL16Nfv27SMzMxNvb2/69u3LoEGD8pzb7777Li1btmT58uXs3LkTFxcXWrduzaBBg3j44Yft1BLrFabtYjvlOU9BmapMVaZWtExVnipP7ak8Z6ryVHmqPI3Kd9/ymKegTFWmij1oJoWIiIiIiIiIiIiIiNiF7kkhIiIiIiIiIiIiIiJ2oYsUIiIiIiIiIiIiIiJiF7pIISIiIiIiIiIiIiIidqGLFCIiIiIiIiIiIiIiYhe6SCEiIiIiIiIiIiIiInahixQiIiIiIiIiIiIiImIXukghIiIiIiIiIiIiIiJ2oYsUIiIiIiIiIiIiIiJiF7pIISIiIiIiIiIiIiIidqGLFJJHeHg4kydP5vHHH8ff359WrVrRpUsXhgwZwpIlS0hNTbV3iQA89NBD+Pn5sXLlygLtv2bNGvz8/OjcuXMxV2a9t99+Gz8/P6v/mzlzJqGhoca/MzIy7N2UIomLi+O+++5jwoQJxmMzZ87Ez8+Pvn372rEy+xgwYADdunUjJSXF6uea37ec/61ZsybXPmfOnCEwMJDOnTvTsmVLAgICePPNN4mMjLRVEwzmvz8/Pz+bHO9W5/3Zs2dJTk7O9Zj572zcuHFFfv3Y2Fjj9U+dOpXr+Dn/2759e5FfS8o2ZWrJU6ZmU6bmpkzNnzJVygLlaclTnmZTnuamPM2f8lSkaBztXYCULjNmzGDOnDlkZmZSpUoVvL29cXJyIj4+nq1bt7J161a+/PJLZs+eTYsWLexdbrnRsGFD2rZtm+fxiIgIkpOTqVGjBg0aNMiz/Y477iiJ8krMhAkTSEtL47XXXrN3KaVCYGAgTz31FB988AGTJk0q1DGqVKmCr68vADVq1DAeP3HiBH379iUpKQkPDw/8/PyIjY1l3bp1/PDDD8yePZuAgACbtKMkpaWlMWfOHL766itCQkKoUqVKib12zr/jsLCwEntdKb2UqfahTM2mTM1NmWo9ZaqUFspT+1CeZlOe5qY8tZ7yVKRgdJFCDKtXr2b27Nm4u7vz/vvv88gjj1CpUiVje2RkJBMmTGDv3r289NJLfPfdd1SvXt2OFVvnkUce4e6778bJycnepeQxfPhwhg8fnufxF198kZ07d9K5c2c++OADi8+9evUq3333HQCOjmX3T3rDhg1s27aNV155hZo1a9q7nFLB19eXp59+mhUrVvDUU09Z/JFQkGMsX74812MZGRkMHz6cpKQkevXqxaRJk3B1dSUtLY0PP/yQJUuW8Nprr/Hjjz/i6elpq+bY1F133WXxvD937hyff/65xee89tprDB06FA8Pj2KpKeffsa1G40jZpUy1H2WqMtUSZWr+lKlSmilP7Ud5qjy1RHmaP+WpSNFouScxzJ07F4A333yTxx57LFfnD8DHx4c5c+ZQo0YNEhMTCQ4OtkeZhebh4YGPjw/e3t72LsWm3Nzc8PHxwcfHx96lFFpaWhqffPIJHh4eDBgwwN7llCrDhw/HZDLx/vvv2+yYISEhnDp1irp16zJ58mRcXV0BcHZ2ZuLEifj7+3Pp0iUWLlxos9e0tcKc97Vr18bHx4fatWsXY2Ui2ZSpZZMytXxTplqmTJXSTHlaNilPyzflqWXKU5Gi0UUKAeDixYtER0cDcPfdd+e7X/Xq1enatSsA+/fvL5HapPxbuXIlZ86c4YknnijRqY9lQf369QkICGD//v38+uuvNjnm2rVrAXjyySdxdnbOtc1kMvHcc88B8L///c8mrydS0ShTxZ6UqflTpoqULcpTsSflaf6UpyJSHMruvDuxqZxT0bZs2ULz5s3z3Xf06NH0798/19qBOR04cIDg4GB27drF+fPncXd3x8/Pj169etG7d+88o18AUlNTWb16NT///DNHjx7l0qVLODs7U7duXe6//34GDRpEnTp1CtSWCxcu0L9/f44dO4avry8LFy6kRo0arFmzhvHjx1OnTh1+++03Y3/zdNWgoCBq167NnDlz2LVrF5cuXaJOnTo8/PDDDB8+3OK04atXr/L111+zbt06Tp06hZOTE23btmXEiBEcP36c8ePH07t373ynwdpCaGgo/fv3B+DQoUPGZ/n222+zdu1aJk+ejL+/P7NmzWLHjh1cvnyZ+vXr8+yzzzJw4EBMJhM//vgjixYt4siRI2RmZtK0aVNefvllunTpYvE1d+3axeLFiwkLCyMpKYmqVavSunVrXnzxRTp06GB1G5YsWQJAr169brrfhQsXmDdvHps2beKvv/7itttuo127dgwdOpRWrVpZfM7JkydZuHAh27dv56+//sLFxQUfHx969OjB888/b4zQMDO/bz179mTatGl5jmc+j+rVq8fmzZuNx83n0bx58zh48CBLly7lypUreHl58dlnn+Hj40NcXBxBQUFs3bqV06dP4+TkxB133EHHjh0ZOHAg9evXt9iGp556il9//ZXFixfn+5kUVGZmpvHjrV27dhb3MU/ZjYmJ4a+//jLWlbVmeuiN709+YmNjefjhh6lZsybbtm1j1apVrFixguPHjwPZU4H79OnD008/jclkMp5n6bw3fwZmjz76KADBwcHcd999N/1sz507x9KlS/n999+Jjo7mypUrVK5cmcaNG/Poo4/ywgsv5DlXRPKjTFWmKlPJ9b4pU5WpylQpDOWp8lR5Sq73TXmqPFWeSnmmixQCQOXKlWnbti1hYWHMnDmTmJgYnnnmGdq2bZunw1arVi1q1apl8ThBQUF8+umnxk3N/Pz8SExMZOfOnezcuZN169bx+eef51pv78KFCwwYMICIiAhMJhPe3t7ccccdxMXFcezYMY4dO0ZISAhr1qzh9ttvv2k7EhMTGThwIMeOHaN58+Z89dVXBV6v8LfffuPrr78mKyuLhg0bUrlyZaKjo1m0aBG//PILa9asyTWCIjExkWHDhrF//35MJhM+Pj44ODjwyy+/sHXrVjp37lyg1y1uYWFhTJkyhYyMDHx8fDCZTERGRvLBBx9w4cIFTCYTX3zxBVWrVqVhw4acPHmSPXv28M9//pN58+blace0adMICgoC4LbbbsPX15dz586xadMmNm3axNChQxk3blyB6wsPD+fEiRN4enredITUuXPn6N27N2fPnsXb25tGjRpx8uRJNm7cyObNmwkKCsrT+QwJCSEwMJC0tDRcXV3x9fXlypUr7Nu3j3379rF69WqCgoJueV5ZY+7cuYSFheHt7Y2HhwfJyck0bNiQ6Ohonn/+eRISEnB3d6dRo0YAREVFsXjxYtauXcvixYst/vjq2LEjDg4O/P777yQlJVGtWrVC1xcXF0dqaipAvtPK77jjDipVqsT169eJiooyOoDWrDea33dEfrKysnjrrbdYt24dVatWpVGjRsTExLB371727t3LyZMnb3le+fr6kpKSwsGDBwFo0aIFLi4ut1zfc+/evQwdOpRLly7h4uKCt7c3jo6OxMbGsmfPHvbs2cOmTZsIDg62+ANW5EbKVGWqMtU2lKnZlKlSUSlPlafKU9tQnmZTnoqUbrpIIYZ33nmHfv36kZKSwtq1a1m7di1VqlShXbt2+Pv7c99999GqVSscHCyvErZx40bjyu+IESN4+eWXjWl6O3bs4PXXX2fnzp28+eabzJkzx3jeRx99REREBA0aNGDevHk0bNjQ2LZ161ZGjx5NQkICixYt4q233sq3/osXLzJ48GCOHj1Kq1at+Oqrr6hatWqB27948WIeeOAB3nvvPWM9wE2bNjF69GhOnTrFqlWrGDhwoLH/5MmT2b9/P15eXsyaNYumTZsC2TdvGzNmTIGu0JeENWvW0K5dOz777DNq1apFZmYmgYGBrFmzhi+//NII3oEDB+Lg4EBiYiKDBw/m8OHDBAUF5eoAfv311wQFBVG1alXeeecdnnzySSA7vL///nsCAwMJCgqiQYMGPPvsswWqb/v27QC0bt0633MLskcz1KtXj5UrV3LXXXcB2aMohgwZQlRUFJ9++ikrV6409t+3bx/jx48nIyODPn368NZbbxkd+CNHjjB27FgiIiIYMWIEK1assNkN3cLCwhg3bhxDhw4Fsn/gVKpUienTp5OQkEC3bt14//33qVy5MgDnz59n1KhR7Nmzh08++YT58+fnOWa1atVo0qQJERER7Nixg8cee6zQ9SUkJBj/n99NBStVqoSHhwdJSUkkJiYaj994czNbSkhIYMOGDQQGBtKvXz8qVarEtWvXmDhxIiEhISxYsIDBgwff9EaI77zzjjHqBWD69Ok0aNDgpq97/fp13njjDS5dukTXrl2ZOnUqt912GwDp6eksWLCATz75hN27d7N161YeeOABm7VZyjdlqjJVmVp0ytTC16VMlfJCeao8VZ4WnfK08HUpT0VKju5JIYbmzZuzcuXKXNPrkpOT+fXXX/nkk0/o06cP999/P9OnT+fq1at5nj99+nQAnnvuOcaMGZNrHcH27dsza9YsADZv3szu3buB7C/YXbt2YTKZGD9+fK7OH0BAQAA9evQAICIiIt/aL1++zKBBgzh8+DBt2rRh4cKFVnX+AGrUqMGMGTNy3bDo4YcfNjpAYWFhxuORkZFs2LABk8nE7Nmzjc4fZN+87Ysvvig10+4cHR359NNPjVEDDg4ODBs2DMieVtmrVy8GDx5sdL48PT2NKYqHDx82jpOWlsbMmTMBmDp1qtH5g+w1Inv06MEbb7wBwMyZM8nIyChQfaGhoUD2CINbmTZtmtH5A/Dy8mLUqFFA9hTua9euGdtmzJhBRkYG999/P++9916uEUbNmjXjyy+/xNXVlUOHDtl0Xct69eoxZMgQ49/mDkt4eDiQvcamufMHULNmTQIDAwkICKBJkyb5Htf8/uzYsaNI9ZlHqAC4uLjku595m6W/9eLywgsv0L9/f2MkiIuLCxMmTMBkMpGRkVEsawyHh4eTlJSEs7MzkydPNjp/AE5OTgwbNgwvLy/g5t9BIjdSpipTQZlaVMrUwlOmSnmhPFWegvK0qJSnhac8FSk5ukghuTRp0oRly5bx7bffMmrUKNq0aYOTk5OxPSEhgblz5/Lkk09y9uxZ4/GoqChOnjwJwIABAyweu02bNrRp0wbIHv0B2V+wmzZtYt++fRav/mZlZeHu7g7kDq6ckpOTGTx4MIcOHeLuu+9m/vz5hbqxVYcOHSwGoo+PD5DdyTT76aefgOz1Ei2tgVivXj3j5m325ufnl2eqaL169Yz/t7R+pLkTnJycbDy2Z88ezp8/T+XKlY1RADd68skncXBwIC4uLlfn8WZiY2OB/Kd1mtWqVcviVE7z+5+VlUVSUhIAKSkpRsfS3Jm9kZeXl/EZmc9HW2jTpk2udSnNzKMlpk2bxs8//5zrfG7VqhVffvkl48ePz/e45qm3MTExRarvZiOBLLHUluLy4IMP5nnM09PT6ERfunTJ5q/ZokULdu3axa5duyxOu09LSzM6hSXZGZbyQZmqTAVlalEoUwtPmSrlifJUeQrK06JQnhae8lSk5Gi5J7GoWbNmNGvWjNGjR3P16lXCwsLYtm0b69atIyEhgejoaMaMGcM333wDwIkTJwBwc3MzOkyWtGzZkj179hidRTMXFxfOnz/Pvn37iIqKIjY2lhMnTnDkyBEuXrwIZI+osOS///2vEaYJCQmFDqz8bnpmHm2Sc9TFsWPHAHKNTrlRy5Yt2bBhQ6FqsSXzWo055RxBZCn0LE0rNbc5PT2dfv365ft6lSpVIjMzkxMnTuQaUZIf89TOW40qyjl6KCfzDwT4+0dCTEwM6enpQPbnkB/zZ3Tj+VgU+a1zOWbMGEJDQzl58iQjR47E2dmZNm3a0KlTJ7p06XLTcwkw1qy8cOFCkerL+X5du3Yt35Eq5hE/OUdb9e3bt8CvU6tWLWbMmGFVbbf6G7x+/bpVx7OGq6srJ06c4PDhw0RHRxMTE8Px48c5evSo8V7k9x0kcivK1L8pU7MpUwtGmZpNmSqSTXn6N+VpNuVpwShPsylPRUo3XaSQW3Jzc6NTp0506tSJMWPGMGHCBP73v/+xd+9eDh06RIsWLYzRDLcaHWKeQnjlyhXjsfj4eP7973+zefPmXF+wbm5utGrViuvXr/Pnn3/me8zU1FTuvfdeTp48SWxsLB9//DH/+te/rG5nztE4t2JeAzFnmN6oMCNlioObm9tNtxd01IJ5lE5aWlquacX5KeiIAvN+t5p6fLNpnzfKObrmZjekMn9GOc/HosqvzmbNmhESEsIXX3zBTz/9RFJSEqGhoYSGhvLpp5/i6+vLv/71L/z9/S0+33yumX8QFVbODn9SUpLFjndGRobxedeoUcN4vCCfu1nOkVAFdau/waysLKuPWRD79u3j3//+d56RVZ6ennTp0oXDhw8bo6lEikqZmpcyVZmaH2VqNmWqSF7K07yUp8rT/ChPsylPRUo3XaQQAN5991127NhB7969efnll/Pdz9XVlUmTJvHjjz+Snp7OyZMnadGihdGxyxm8lpjD3rz/tWvXGDBgAJGRkVSrVo2+ffvSsmVLfHx88Pb2Nm7mdLMOYKdOnfj888/55ZdfGDNmDMuXL6dbt260b9/e2rehwMydqpu115aditLA3OYWLVqwZs0amx3XxcWFlJSUXFOViyrnepqXL1/O1YnJydyZyrm/WX6djaJMp/Ty8mLy5MlMmjSJgwcPsnPnTv744w9CQ0OJiIhgyJAhfP/99xZHFplrLeo6snXq1MHDw4PLly9z+vRpi1OY//rrL2NESM41eI8ePVqk1y6NIiMj6d+/P6mpqTRp0oRnnnmGpk2b4uPjY4yaef7559UBFKsoU62jTFWmFoYytfRRpoqtKU+tozxVnhaG8rT0UZ5KRaV7UgiQ3RE7deoUP//88y33rVKlihGY5nX4GjduDGSHY2RkZL7PPXjwIPD32oc///wzkZGRODo68s033zB27Fi6du1Ko0aNjBsT5VxX1JLu3bvj6urKY489RteuXcnKyiIwMJCUlJRbtqWwzDeIulkgmm9CVV6Y15uMiorK94ZjWVlZ7Nixg6ioKNLS0gp03Jo1awJ/j/yxBW9vb2M6sPmcs+TG8xEwzjvzVNwbnTt3zup6srKyiI2NZfv27UD2yKC77rqLIUOGMH/+fNavX0+VKlW4evUqP/74o8VjmN+f/Dqz1jBPcd6zZ4/F7ebH69Wrl+/01vJi0aJFpKam0rhxY1atWsXgwYPp2LFjrnbHxcXZsUIpi5Sp1lGmKlOtoUwtvZSpYmvKU+soT5Wn1lCell7KU6modJFCgOybSUF2IN5qBMK2bdtISkqiWrVq3H333UB258DcQVi0aJHF54WFhbF//34AOnfuDPx9Q6rKlSvnuhpudv78eX755RegYGv9vfvuu3h4eBhTaovLI488AmQHpaUOb0JCgnHjsvLinnvuwcPDgytXruR7jqxfv54BAwbQvXv3W3bczcznTUH3Lwh3d3djlFJwcLDFfWJiYti8eTPw9/kIf081Na9hm9P169eN51gjKSmJbt26MWjQIA4cOJBne6NGjahbty6Q/5qS5vfH/GOrKLp37w7AmjVrLHbUv/76awB69+5d5NcqaTmnhhdk6u3p06eB7JsPWpp2/vvvv3PmzBmgeNcblfJFmWodZaoy1RrK1JKjTBV7U55aR3mqPLWG8rTkKE9FCkYXKQTIno7arVs3ACZOnMiUKVPyTB27du0aq1evZuzYsQCMHTs21xTEMWPGAPDNN98wY8aMXMESGhrKK6+8AkBAQAAdO3YE/g6zixcvsmjRolxf2Hv37mXQoEEkJSUBBZvCWKdOHd58800Ali9fzo4dOwr8HlijefPmdO3alczMTEaNGsXx48eNbWfOnGHEiBG3nFZc1ri7uzNs2DAApkyZwurVq3N1Vn7++WdjndXu3btbnKJpSdu2bYH8R0wU1qhRo3B0dGTbtm288847uT6P8PBwhg4dyrVr12jatClPPfWUsa1du3ZA9k3YgoODjXPy4sWLTJgwgYiICKtr8fT0JCAgAIAJEybk+tGQmZnJ0qVLiYiIwMHBwdjvRub3x1xfUTz55JN4e3sTExPDuHHjjPcmLS2NyZMn8+eff+Lh4cH//d//Ffm1SlrONXjNHbebMf8A+f3339m9e7fxeEZGBhs2bODVV181HjPf9E7kVpSp1lGmKlOtoUwtOcpUsTflqXWUp8pTayhPS47yVKRgdE8KMUybNg13d3e+/fZbgoODCQ4Opm7dutSoUYNr164Z0yOdnJx4/fXX6du3b67nd+/enejoaKZPn87s2bNZtGgRjRo14sKFC8aV4HvvvZePP/4Yk8kEwEMPPUSbNm3Ys2cPU6dOJSgoiDp16hAfH09cXBwmk4mOHTuyfft2zp07R1ZWlvHc/Dz77LOsX7+enTt3MmHCBNavX29xPceieu+99zh16hTHjh3jiSeeoEmTJlSqVIljx47h6OiIn58fR48eNaZmlgdDhw4lJiaGFStWMGHCBD7++GPq169PXFycMcW0Xbt2TJkypcDH7Ny5M9OnT+fAgQOkpaXh7Oxsk1rbtGnDlClTmDhxIitWrCAkJAQfHx9SUlI4efIkkD0letasWbles0uXLvj7+7N7926mTJnCV199haenJydOnCA9PZ3Ro0czc+ZMq+uZNGkSzz33HBERETzxxBPUr18fDw8Pzpw5Y0yTffXVV2nSpEme5549e5bTp0/j6OhIp06dCvmO/M3FxYVPPvmEwYMHs3HjRrZu3Urjxo2JjY0lKSkJJycnZs2alesGZmVFtWrVqFevHqdPn2bkyJE0btyYMWPG5BqJlNPgwYPZsGEDiYmJ9OvXj4YNG1K5cmViY2O5ePEi7u7uxneULUdSSfmnTLWOMlWZag1laslQpkppoDy1jvJUeWoN5WnJUJ6KFIxmUojB2dmZDz74gJUrVzJ48GBatGhBWloa4eHhnD17lkaNGvHSSy8REhJijFa40T//+U9WrFjBE088QZUqVQgPDyc1NZUOHTrw4YcfsmjRolyhUqlSJRYtWsS4ceNo1qwZV69eJSIiAkdHR3r06MHSpUv5/PPPcXFxISkpibCwsFu2w2QyMXnyZFxdXTl9+nSxTamtXr06K1asMEImOjqaM2fO8OCDD7JixQpat24NYHF6XlllMpl47733mD9/Po888giOjo4cOXKEK1eu0Lp1ayZOnMjChQutanPz5s258847uXbtGqGhoTat96mnnmLdunX06dOHmjVrcuzYMRITE2nbti3vvvsuq1atwsvLK9dzHBwcmD9/PmPHjuXOO+8kISGBM2fO0KFDB5YvX07Pnj0LVUvt2rVZtWoVL730Ek2aNCE+Pp6IiAhcXFx4/PHHWb58eb5/V7/99hsA999/v03W+4TsNT/XrVvHP/7xD6pWrcrRo0cxmUx069aNlStXFutN/YrbZ599Rps2bcjMzCQqKoro6Oh8961bty4hISH07duXhg0b8tdff3Hy5Elq1qzJiy++SEhIiDEyLzQ0tFjXEZbyRZlqHWWqMtUaytSSo0wVe1OeWkd5qjy1hvK05ChPRW7NlFWQBdFExGqvvPIKGzdu5NVXX2X48OH2LqdUW7t2LW+//TbdunVjxowZ9i6n1PnHP/7BgQMHWLJkCffcc0+BnjNz5kxmzZpF27ZtWb58eTFXKDfy8/MDYMGCBcbSASJSeMrUglOm3pwytexRporYjvK04JSnN6c8LXuUp1LaaSaFSCH8/vvvPPzww8Yapze6evUqO3fuBLJHYcjN9ezZE29vbzZv3kxCQoK9yylVwsPDOXDgAPfee2+BO38iImWJMtW2lKn5U6aKSHmmPLUt5Wn+lKciUhx0kUKkEJo1a0ZcXBw//PAD8+fPJyMjw9iWkJDAuHHjSExMpHHjxnTo0MGOlZYNjo6OjBo1ivT0dIKDg+1dTqny5ZdfYjKZ8v2xISJS1ilTbUuZmj9lqoiUZ8pT21Ke5k95KiLFQTfOFimE6tWrM27cON5//30++ugj5s2bR7169bh69SoxMTGkp6dz++2389///hcnJyd7l1sm9OrVi++//56FCxfSt29fbr/9dnuXZHcHDhxgw4YN9OvXD39//0IdIyIiwriB4PDhw+nSpYstS5Qc5s6dy6+//mrvMkTKHGWq7SlT81Kmli3KVBHrKU9tT3mal/K0bFGeSlmimRQihTRw4EBWrVpFz549qVatGidOnOD8+fM0adKE0aNH8+233xpr/knBvPfee7i5uTF9+nR7l1IqfPTRRzRo0IBx48YV+hjJycmEhYURFhamacrFLCoqynivRcQ6ylTbU6bmpkwtW5SpIoWjPLU95WluytOyRXkqZYlunC0iIiIiIiIiIiIiInahmRQiIiIiIiIiIiIiImIXukghIiIiIiIiIiIiIiJ2oYsUIiIiIiIiIiIiIiJiF7pIISIiIiIiIiIiIiIidqGLFCIiIiIiIiIiIiIiYhe6SCEiIiIiIiIiIiIiInahixQiIiIiIiIiIiIiImIXukghIiIiIiIiIiIiIiJ2oYsUIiIiIiIiIiIiIiJiF/8PWxw6b8Kz2sIAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH3CAYAAADOlrxeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfTklEQVR4nOzde5yM9f//8efseReLZZ0PrcM6hihEhSikAz5ChBQqKfroI0rlk8qh+lZKTqEIOQsJ0ZZj60xO67gOK6zznnftzu8Pv52PtQezs7Nzzc487reb2213rvdc1+s1M+Z17bzmer9NZrPZLAAAAAAAAAAAAAfzMDoAAAAAAAAAAADgnmhSAAAAAAAAAAAAQ9CkAAAAAAAAAAAAhqBJAQAAAAAAAAAADEGTAgAAAAAAAAAAGIImBQAAAAAAAAAAMARNCgAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCG8jA4AAADAHYWHh6t379552kfjxo01e/Zsq8cPHz5cS5culSRt2rRJwcHBeTr+7W7PZ+jQoRowYIBN+zl16pR++OEHbd68Wf/88498fX1VoUIFPfbYY+rWrZtKlChht5hzy4jnDI519uxZFStWTIULFzY6FIeKj49Xp06ddPHiRa1evVqlS5e2bIuLi9NXX32lVatW6fr166pSpYoGDBigDh06ZNrP2bNn1bp1a5tiGDNmjDp37ixJioqKUvv27VWpUiUtXrxYvr6+tiUGAACAAoErKQAAAOAUlixZoqeeekpz5sxRZGSkkpKSdOPGDR08eFBfffWVOnTooD///NPoMOGCkpOT9c0336hDhw66du2a0eE43JgxYxQZGamXX345Q4MiKSlJffr00Q8//KDo6GglJyfr8OHD+ve//60ZM2bkWzzly5dX3759dfToUX322Wf5dhwAAAA4B66kAAAAMEDdunW1bNmyLLft379fI0eOlCS1atVKgwcPznJcQEBAfoXncH/++afeeecdmc1m+fn5qW/fvnrggQdkNpu1bds2zZw5U1evXtUbb7yhuXPnqk6dOg6PkefMdU2bNk1ff/210WEYYvv27VqwYIHKlCmjF154IcO2efPm6e+//1bt2rX18ssvq1SpUtq5c6e+/fZbffHFF3r66adVsmTJLPdbp04dffzxx1bHUbZs2Qy/9+/fXwsWLNCPP/6op556SvXq1ct1bgAAACgYaFIAAAAYoFChQqpVq1aW227cuGH5uVixYtmOy62xY8dq7NixdtmXPaWlpWn06NEym83y9vbWnDlzVLduXcv2hx56SA8//LB69+6txMREff755/n6Le7sGPGcwTHS0tKMDsEQqamp+vDDDyVJAwcOlJ+fX4btf/31l3x8fPTDDz8oMDBQktSwYUMVLlxYo0aN0q5du/T4449nue+c/r9Yo3Dhwnr55Zc1ZswY/fe//9WiRYtkMpls3h8AAACcF9M9AQAAwFB//fWXzpw5I0l6/vnnMzQo0j3wwANq0aKFJGnz5s26fv26Q2MEXNGKFSt05MgRlShRQp06dTI6nEy6deumwMBA7d+/X2vXrjU6HAAAAOQTmhQAAAAwXKtWrVSuXLkcF92tWrWq5ed//vnHEWEBLstsNmvSpEmSpGeeeUY+Pj6ZxjRt2lTJycnq06ePVq9erV27dum7777T+PHj5ePjo0aNGuVrjP7+/nryySclSd9++22+HgsAAADGYbonAACAAq5Xr17atm2bWrdurU8//VRjx47V2rVrlZiYqDJlyui5557TCy+8oOHDh2vp0qWSpE2bNik4ODjTvs6cOaOFCxdq27ZtOnPmjK5fvy4fHx8FBQWpfv366ty5s5o3b27X+Js1a6ZmzZrdddy5c+csP5cqVcquMThaQkKC5s2bp3Xr1unEiROKjY1VsWLFVLduXT311FNq3769PDwyf58oPDxcvXv3lnTrW/AVKlTQrFmz9Msvv+js2bPy8fFR9erV1bNnT7Vv317SrQ+jlyxZosWLF+vo0aNKTk5WpUqV1KFDB7344ouZPpy+/Rjz589XtWrVNG3aNK1evVr//POPfH19VatWLXXp0kVPPfXUXafg2bNnj+bPn6/t27fr4sWL8vLyUvny5fXQQw+pV69eKleuXJb3s/Z1nS42NlaLFi3Spk2bdOTIEV2/fl1ms1lFixZV7dq19dhjj+mZZ56Rt7e35T5LlizRiBEjMhw3vVFWvnx5/f7775Jk1f8dSXr55Zf1xx9/SJIiIiIybHv00UcVFRWl3r176+WXX9bo0aO1ceNGmc1mVahQQQMGDNBTTz1lGW82m/Xrr79qxYoV2r9/v65evapChQqpatWqat26tbp3765ChQrl+NjnZOPGjYqMjJSkbK+i6N69u5YvX64DBw5kWmdlxIgRKlGihM3Ht1anTp00d+5cHT58WDt27ND999+f78cEAACAY9GkAAAAcBE3b97UgAEDtGPHDsttkZGRKlq0qFX3nzJliiZMmKCbN29muD0lJUVxcXE6c+aMVq5cqeeee06jRo2yZ+h3tW/fPq1bt06S1KRJEwUFBTn0+Pa0b98+DRo0SBcuXMhwe3R0tMLCwhQWFqbZs2drwoQJOTZjzp07p9dff93yQbMkxcfHa/v27dq+fbtOnDihfv36adCgQdqwYUOG+x45ckRHjhzR1q1bNWPGDHl6emZ5jMuXL2vEiBE6ceKE5bakpCSFh4crPDxca9as0f/93//J19c3031v3rypjz76SPPmzctwe1JSkuX4P/74o0aOHKlu3bplm6c1r+uNGzdq6NChWU4DdvHiRV28eFF//PGHFixYoBkzZqhw4cLZHi+/xcbGqmfPnhmetyNHjqh06dKW3y9fvqxBgwZp165dGe577do17dy5Uzt37tT333+vCRMm6L777rMpjkWLFkmSypUrp9DQ0CzH+Pn5adasWfryyy+1evVqXbt2TdWqVdOAAQP0xBNP2HTc3Lr33nsVFBSkK1euaPHixTQpAAAAXBBNCgAAABexceNGpaWl6dFHH1Xv3r2VmpqqdevWqV27dne97+LFi/V///d/kqQyZcro+eefV+3atVWoUCGdO3dOYWFhWrlypdLS0jRv3jy1bt1aDz/8cL7lYjabFRcXp1OnTunnn3/WggULlJycrKJFi+r999/Pt+Pmt6NHj6pPnz6Kj49XoUKF1KNHDz344IMqUqSIoqKitHLlSq1bt067d+/WSy+9pPnz5ysgICDLfQ0fPlxXr15V+/bt1bFjRwUEBGjLli2aOnWqUlNTNWnSJO3cuVObN2/Www8/rG7duqlUqVKKiIjQhAkTFB0drb/++ks///yzOnfunOUxPvjgA0VHR6t27dp68cUXValSJZ04cULTpk3T8ePHtW7dOr399tv68ssvM9135MiRlqsPGjVqpK5duyokJERJSUnavXu3Zs+erejoaL3//vvy8fHJ9tv8d3tdnzhxQq+++qpSUlLk5+enbt26qVmzZipevLguXbqkvXv3avbs2YqPj9fevXs1ZcoUDR06VNKtqxuWLVumefPmaf78+ZKkqVOnqlSpUhmuuLCnZcuWKS0tTV26dFHHjh0VExOjLVu2qHHjxpJuNZp69+6tY8eOyWQy6amnnlLbtm1VqlQpXbt2TRs2bNCCBQt08eJFvfjii1qwYIGqV6+eqxiSk5O1ceNGSdKDDz6Y49jChQtr5MiRGjlypG0J55HJZNKDDz6oX375RWFhYUpNTc22qQYAAICCiSYFAACAi0hLS1OjRo00ceJEy1RBDz300F3vZzabNWHCBElSYGCgfvzxR1WsWNGyvUGDBnriiSdUv359jR49WpK0evXqfG1SLF++XMOGDctwW8OGDfXRRx9lWJuioPnPf/6j+Ph4lSlTRrNnz1alSpUs2+rVq6f27dtrzpw5+vDDD3XkyBF9++23euutt7Lc19WrVzVo0CC9/vrrltsaN26s5ORkTZ8+XSkpKdq8ebN69OihDz74wDKmfv36ql+/vp5++mlJ0vr167NtUkRHR6tFixb65ptvLNNC1a9fX23btlXfvn21Z88e/frrr+revbuaNm1qud+6dessDYqXX35Z//73vzPst3Hjxnr22WfVq1cvHTt2TB9++KFatmyp4sWLZ4rhbq/rb7/9VikpKZKkzz//XG3atMlw/9atW6t9+/bq0qWLbt68qdWrV1uaFMWKFVOxYsUyTN9UtWpVVahQIcvHwx7S0tL05JNP6uOPP7bc9uijj1p+/uKLL3Ts2DF5eXnpm2++UatWrTLc/5FHHtEzzzyjXr16KT4+Xu+++64WLFiQqxj27dun+Ph4SVKtWrXykE324uLidOjQobuO8/X1VZUqVXIcU7NmTf3yyy+6evWqIiIiVLt2bXuFCQAAACfAwtkAAAAupFu3blmuZZCTqKgoFS1aVEWKFFHnzp0zNChul/6htqRMUxXZ2+3rT6RLnx4oqyl9CoLNmzdbPrR9++23MzQobtezZ0/Lt+rnzZtn+QD+TsHBwXr55Zcz3X77lTMBAQFZNjlq1KhheZ5Pnz6dbcxFixa1LJJ8u4CAAI0bN87yWvvpp58ybP/uu+8kSdWrV9ebb76Z5b6DgoIszZP4+HgtXLgw2zhyel1fvXpVJUqUUJ06dTI1KNLVqlVL1apVk5T/r11rPPfcc1nefuPGDcvj8Oyzz2ZqUKS799571a9fP0nS3r17tXfv3lwdf//+/Zafc3sVhrUOHDigjh073vVfdq+P290+HdW+ffvyJV4AAAAYhyYFAACAC2nQoEGu71OhQgUtX75cO3bs0Ntvv53tuCJFisjPz0/Sreli8tMDDzygmTNnauHChRo/frwaNGig2NhYzZ07V88//7wuX76cr8fPD+kLKku66+LjLVq0kHRr/YK///47yzH3339/puaBpAxrG9SrVy/bxZXTFz2Oi4vLNo4nnnhCxYoVy3LbPffco0aNGkm6NSVT+lom169f1549eyRJTZs2zXFh7UaNGlni++uvv7Idl9Prevr06dqyZYtljYXslCxZUlL+v3bvxsvLS/fee2+W27Zt26aEhARJd3+NPPLII5aft27dmqsYbl8Po3Llyrm6rxFuj/HUqVMGRgIAAID8wHRPAAAALqRs2bJ5un/6t9VjY2N15swZnT59WsePH9ehQ4e0c+dOJSYmSro1RVR+un1x3Hr16umpp57SyJEjtXjxYh05ckTjxo3T+PHj8zUGe7t96pv0KyWscebMGTVs2DDT7eXLl89y/O1rKdw+jdGdsmpw3Cmr496udu3a2r59u2JjY3Xx4kWVK1dOhw4dsrw+Zs+erdmzZ9/1ONKtPLNjzes6/bWblJSks2fP6uzZszp58qQiIiK0a9cuywfz+f3avZvixYtnudC4JB08eNDy86BBg6zeZ06PXVaio6MtPxcpUiRX97VW48aNrX7u7yYwMNDy88WLF+2yTwAAADgPmhQAAAAuwtvb26oPnrNz/PhxzZw5Uxs2bMhySpycvhGf3zw8PDRq1Cht2rRJFy5c0KpVq/Tf//5X/v7+Vt3/bnPjV61aNU+PnTWuXr1q0/1u3LiR5e3ZXSFxOy+vvJ3ulypVKsftQUFBlp8vXbqkcuXK2T1Pa17X165d0w8//KA1a9bo5MmTSktLyzTGw8Mjy9sdLafnzd6PXXbS16Pw8PCw6nVktNsbKTld+QMAAICCiSYFAACAi8hLE2Hx4sV6//33LVP2SLcWFa5SpYqqV6+u+vXrq3nz5mrfvr3lA05H8/HxUcuWLTV//nylpKToxIkTqlOnjlX37dixY47b169fn6+LJUuyPLbFixfXzJkzrb7f7dM33S6vDQhr3O0Yqamplp/Tr+C4/bZXX31Vbdu2tepY2a05cbfX9f79+zVgwIAMU4D5+fmpSpUqqlq1qurWraumTZvqiy++yDDlVn6wpgmSUz63P3YTJ07M9mqZOxUuXNiqcXfGYDKZDG0+Wuv2GAtCvAAAAMgdmhQAAABuLiIiwtKgKFSokF5//XU99thjmT60T0tLs0z3ZE/Xr1/X6dOndenSpWwXCk53+/oI2S0o7azSY4+Pj1eNGjVyvcC5Ea5du5bj9tu/+Z8+tVTRokUtt/n5+alWrVr5Ept0a2qnN954w9Kg6NWrl/71r38pNDRUnp6eGcbmpbl2+wfjOU0XFRMTY/MxpIyPXVBQUL49dulXT6Smpio5OTnfryLKq/R1OiTrriACAABAwUKTAgAAwM3Nnz/f8i3/999/P9urDs6fP58v0+UMGzZMf/zxh0wmk7Zs2ZJhCqE7nT592vJzmTJlrD5GREREnmK0h+rVq2vPnj1KSkrSoUOHcrwKZMOGDTp27JjKly+vBx54IMfHJD8dPnxYbdq0yXZ7+qLewcHBloW4Q0NDLdvTF9DOTnJysqZOnarSpUurWrVquu+++3IVX1hYmKKioiRJnTt31siRI7Mde+7cuVzt+3a3NzxyatT9888/Nh9DuvUaSbd3794c1wQ5efKkVq9erfLly6tevXq65557rD7O7dN4RUdHW33FhlFuX0MjuyuLAAAAUHA5/9e3AAAAkK9OnTpl+TmnD86XL19u+fn2aaHyqlGjRpJufUN90aJF2Y6Ljo7Wn3/+KUmqUqVKrpoUzuChhx6y/Dx37txsx6Wmpuq///2vxo0bpzfeeCPDt8gdbeXKlRmmILrdsWPHtHfvXklSmzZtLFcblC5d2vJh+6ZNm3Jc1Hn58uX6+uuvNXLkSC1YsCDX8d3etKpbt26243bt2qWzZ89afr/z9Xu3KYRuXxMhvSlyp4iICJ0/fz7H/dzNgw8+aJlia+HChTleLTRp0iR9+eWX+s9//nPXZtCdbm9oZJePM7k9xpCQEAMjAQAAQH6gSQEAAODmihcvbvl5w4YNWY75888/NXHiRMvvycnJdjt+p06dFBAQIEmaMmVKllc9xMbGasiQIZYpewYMGGC34ztKmzZtVLFiRUm31gC5velzuzFjxlg+UG/durWh33I/efKkvvjii0y3x8bGatiwYTKbzfL29tbzzz+fYXvfvn0l3ZqS69///neWCzufPHlSn376qaRbTYJevXrlOj5rXruRkZEaNmxYhtvufP3ePt1RVtNC1ahRw/Lzjz/+mGl7XFyc/vvf/1oXdA6Cg4P15JNPSrq1kP3o0aOznF7q119/1YoVKyz3adeuXa6OU69ePcvPd1tU3hkcPnzY8nP9+vUNjAQAAAD5gemeAAAA3Fz79u0tH3h+8cUXio6OVvPmzVW4cGFFRUVpzZo1+u233zJ8WBobG2u34wcHB2vYsGEaNWqUYmNj9eyzz6pPnz5q3LixChcurL///lvff/+95dvUHTp0uOtC2M7Iy8tL48aNU58+fZSSkqJhw4YpLCxMHTp0UHBwsKKiojR//nz99ddfkm6tT/DOO+8YHLU0bdo0HTt2TF27dlWJEiUUERGhqVOnWq6Q6N+/v6pVq5bhPp07d9batWv1xx9/aN++fXrqqaf0wgsvqF69ekpOTtbOnTv1ww8/WJoXffr0Ue3atXMdW8uWLeXv76+EhAT98ccfGjhwoDp37qzg4GBdunRJmzZt0rJlyzI1HmJiYiyNMSnj9EfffvutXnzxRaWlpalBgwaSpEcffVSBgYG6ceOG1q1bp4EDB6pr164KDAzUoUOHNGvWLEVGRqpSpUoZru6wxdtvv63w8HD9888/mj9/vg4fPqwePXooJCREly9f1u+//66lS5cqLS1NJpNJo0aNkp+fX66OUadOHRUqVEhxcXHat29fnuJ1hPQrdkqWLJlhSiwAAAC4BpoUAAAAbq5169bq1q2b5s+fr5SUFM2cOVMzZ87MNK5z5866fv261q9fr6ioKCUkJMjf398uMTz33HNKTk7Wp59+qqSkJE2dOlVTp07Ncty777571+l5nFWjRo00depUvfnmm7p27ZpWrVqlVatWZRpXpkwZTZw4MdPi5Y7WqVMnbdq0SWFhYQoLC8u0/bXXXtMbb7yR6XaTyaSvvvpK7777rlauXKnz589r7NixWR6jZ8+eevvtt22KLzg4WKNGjdI777yj1NRUrV+/XuvXr880rn79+mratKmmTJki6dZUVbevbdCsWTMFBAQoPj5ev/76q3799Vd5e3tr165d8vHxUWBgoMaMGaMhQ4YoJSUly+P06NFDVatW1ejRo23KJV1QUJB+/PFHvfbaazp8+LD27t1r+ZD+dn5+fho1alSOa4Zkx8vLS61bt9by5cu1ZcsWmc1mp/0/dfPmTYWHh0uS2rZta3A0AAAAyA9M9wQAAAB9+OGH+uKLL9S8eXMVK1ZMnp6eCggIUJUqVdSxY0fNmTNHY8aMUatWrSTdmsbnt99+s2sMffr00YoVK9SzZ0+FhITIz89Pfn5+qly5srp06aLFixdr1KhR8vb2tutxHa1Zs2Zav3693nrrLd1///0qXry4vLy8FBgYqIYNG+o///mPfvnllxzXWHCUKlWqaPny5erdu7fKly8vHx8fVapUSc8884yWLl2aZYMinZ+fnz7//HP9+OOP6tSpkypVqiR/f3/5+PiofPnyeuaZZzR37ly9//778vCw/c+Sjh076qefflKHDh1UunRpeXt7y9fXV+XKlVOrVq30f//3f5o7d666dOliuc+vv/6aYR+lSpXS999/rwcffFBFihSRj4+PSpUqlWEh7DZt2uiXX35Rt27dVKFCBfn4+KhEiRJq2bKlpk6dqg8++MDmHO5UoUIFLVmyROPHj9ejjz6qUqVKydvbW/7+/goNDVXfvn21cuVKderUyeZjpF+NdOXKFe3cudNOkdvftm3bFBMTI0kF8goqAAAA3J3JnNUkpwAAAADcUnh4uHr37i1JGjp0aIFc/wPW6dSpkw4ePKjnnntOo0aNMjqcLI0YMUJLlixRkyZNNGvWLKPDAQAAQD7gSgoAAAAAcEMDBw6UJK1YsUJxcXEGR5PZ9evXLVe9pMcKAAAA10OTAgAAAADcUJs2bRQaGqrY2FgtWrTI6HAymT9/vhISEtSwYUM1bdrU6HAAAACQT2hSAAAAAIAbMplMloXov/vuOyUlJRkdkkVcXJxmzJghT09PjRgxwuhwAAAAkI9oUgAAAACAm2ratKmef/55Xbx40anWfJg5c6auXr2qfv36qV69ekaHAwAAgHxEkwIAAAAA3NjQoUN1zz33aNKkSbp48aLR4ejcuXOaNm2aQkNDNWjQIKPDAQAAQD4zmc1ms9FBAAAAAAAAAAAA98OVFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAIL6MDAOA8zp49q9atW2e5zWQyqWjRoipbtqweeeQRvfDCCwoKCnJwhM7rp59+0gcffKCPPvpIzz77rNHhAAAMRD213vnz5zVjxgxt3LhR586dkyRVqFBBLVu21IsvvqgSJUoYHCEAwEjUVOtFRkZq6tSp2rJliy5duqSiRYuqfv366tmzp5o3b250eACQI5PZbDYbHQQA53D7CWBoaKgKFy5s2Zaamqrr16/r7NmzunnzpooXL64ffvhBNWrUMCpcp7Fv3z698MILiouLo0kBAKCeWmnHjh169dVXdePGDXl6eqpSpUpKS0vT2bNnlZqaquDgYH333XeqWbOm0aECAAxCTbXOxo0bNWjQICUmJsrf31+VK1fWlStXdPHiRUnSiy++qLffftvgKAEgezQpAFjcfgI4a9YsNWnSJNOYq1evavjw4frjjz90zz336Ndff5WHh/vOHBceHq7XX39d169flySaFAAA6qkVbty4obZt2+rKlSt6+OGH9cknn6hUqVKSpDNnzmjYsGHatWuXKlSooFWrVsnX19fgiAEARqCm3t2VK1fUrl07Xb9+XR06dNB///tfFSlSRJK0YsUKvf3220pNTdWECRPUtm1bg6MFgKy5z7s2ALsoXry4xo4dKx8fH0VGRmrTpk1Gh2SIpKQkff311+rbt6+lQQEAgLXcvZ4uWbJEV65cUalSpfTll19aGhSSVLFiRU2cOFFFixbV2bNntXr1agMjBQA4O3evqYsWLdL169dVvnx5jR071tKgkKSnnnrK8iW6n376yagQAeCuaFIAyLXixYurevXqkqSjR48aHI3jnTp1Sm3bttU333wjSRoyZIjKly9vcFQAgILGnetpeHi4JKlVq1YZpu5IFxQUpPvuu0+S9Pfffzs0NgBAwePONbVChQp68skn1aNHD/n4+GTanj79VfraTwDgjFg4G4BNbt68KUkqVKhQlttWrlyp1atX68CBA7p27Zq8vLxUqlQpNWnSRH379lVISEiW91u6dKkWLlyokydPKi0tTXXr1lX//v3l7e2t3r17q3Hjxpo9e/Zd4wsPD1fv3r2tzqdTp04aO3asVWPPnz+vf/75Rw0aNNB7772nunXrauHChVYfCwCAdO5aT1999VW1bds2y/jTpc9Km5aWZvXxAQDuy11r6hNPPKEnnngi2+379++XJFWuXNnqYwOAo9GkAJBrp0+f1tGjR+Xh4aGHH344w7bExEQNGDDA8g3J8uXLKzQ0VJcvX1ZkZKQiIyO1YsUKzZkzR7Vr17bcLykpSYMHD1ZYWJikWydQhQoV0o4dO/TXX3/psccey1WMRYoUUcOGDa0ef88991g9tkyZMpo6dapatGiRq5gAALidO9fTevXqqV69etluv3LlirZt2yZJqlatmtXHBwC4J3euqdm5ceOGZs2apSVLlsjLy0v9+/fP0/4AID/RpABgldTUVN24cUO7d+/WuHHjlJaWpldeeSXTNEfTpk1TeHi4ihcvrqlTp2b4AGLfvn0aOHCgoqOjNXnyZE2YMMGybeLEiQoLC1OxYsU0YcIEy4JoFy5c0NChQ/Xbb7/lKt7atWtr3rx5ecg4e5UrV+ZbKAAAm1BPrfPxxx8rISFB/v7+LPIJAMgSNTVra9as0ddff61Tp04pOTlZZcuW1ahRo/TAAw/k+7EBwFY0KQBk6W6Xofbv319DhgzJdPuWLVvk4eGhQYMGZfqGZL169fTcc89pwoQJOnLkiOX2GzduaObMmZKkcePGWU7+JKl06dKaNGmS2rdvr+jo6DxkBACA41FPc+/bb7/VypUrJUkDBw5UiRIlDI4IAOAMqKnW2bdvX4Z1Oa5fv66wsDDdf//9Wa4DBQDOgCYFgCyFhoZmOIFJS0tTXFyc5dsY33//vRISEvTOO+/I09PTMm7evHlKSUmRyWTKcr/+/v6Sbl1ym+7PP/9UcnKyypUrp5YtW2a6T5EiRdS5c2dNmTLFTtkBAOAY1NPc+eabb/T1119Lklq3bs3UFAAAC2qqdXr16qXXXntNsbGx2rx5s8aPH6+ffvpJ+/fv1/z58+XlxUeBAJwP70wAsjRy5MgM3xZJl5ycrKVLl2r06NH68ccflZqaqlGjRmUY4+3trevXr2vPnj2KjIzUmTNnFBkZqUOHDunSpUuSMi6Cmf4tjxo1amQbT926dXMV/8GDBzV69Girx7do0UKvvPJKro4BAMDdUE+tc/PmTX344YeaP3++JOmhhx7SF198ke0HSgAA90NNtU6ZMmUkSQEBAerUqZPq16+vjh07av/+/Vq+fLk6d+6c630CQH6jSQEgV3x8fNStWzdFR0fr66+/1oIFC/Tyyy+rbNmykqTY2Fh9/PHHWrFihVJSUiz38/b2Vp06dVSrVi1t3Lgxwz6vXr0q6dZJVHZye1lqTEyMdu3aZfV41pgAADgS9fR/YmNj9cYbb2jz5s2SpCeeeELjxo2Tj49PrvcFAHA/1NScValSRY899phWrlypbdu20aQA4JRoUgCwSevWrfX1118rNTVVBw8etJwADhw4UOHh4fLz89Pzzz+v+vXrq3r16qpcubK8vb21YMGCTCeA6ZfXxsbGZnu8uLi4XMXXpEkTRURE5DIrAAAcy93r6fnz59W/f3/LPOAvvfSS/vOf/3AFBQAg19y1pl67dk1nz55VuXLlFBQUlOWY9MXEnXENDQCQaFIAsNHtHx6YzWZJ0p49exQeHi5JmjJlipo2bZrpfufPn890W2hoqCRlWKjsTocPH85TvAAAOCN3rqcXLlxQr169dPr0aXl6euq9997Tc889Z3RYAIACyl1rapcuXXTmzBm99dZb2a7lFBUVJenWot8A4Iw8jA4AQMH0559/Srp1Ipg+F+fZs2ct27OanzMhIUG//PKLJCk1NdVye8uWLeXt7a1//vlHmzZtynS/pKQkLVu2zJ7hAwDgFNy1niYnJ+vVV1/V6dOn5e3tra+++ooGBQAgT9y1pjZv3lyStGjRogzTWaU7e/as1q1bJ0l69NFHHRobAFiLJgWAXDGbzVq7dq0mT54sSWrbtq1lYa4qVapYxk2cODHDCdKxY8fUv39/RUZGSrp1MpiuZMmS6tGjhyRp+PDhGebpvHr1qoYMGZLh5BIAgILO3evptGnTdODAAUnSBx98oMcee8zgiAAABZW719R+/frJz89PkZGRGjp0qK5cuWLZdvDgQb300ktKTEzUAw88oNatWxsYKQBkz2ROvwYOgNs7e/as5aQlNDQ000JgN2/eVFRUlC5fvixJqlOnjqZPn67ixYtbxgwZMkS//vqrJKlYsWKqUKGCZY5M6da3PNIXxty5c6flGImJierfv7+2bdsmSbrnnntUqFAhHT16VDdv3lTt2rW1f/9+Pfjgg/r+++/z70Gw0aOPPqqoqCh99NFHevbZZ40OBwBgIOppzpKTk/XQQw/p+vXr8vLyUr169XIc36JFC73yyisOig4A4EyoqdYJCwvTm2++qYSEBPn4+CgkJERJSUmWBkyDBg00adKkbNesAACjsSYFgCxlNfemr6+vgoKC1KpVKz3++ON6+umn5eWV8W3k888/V7NmzbRgwQKdPn1aERERKl68uFq1aqXu3burZcuWatWqlc6dO6fff/9dTz/9tCTJz89PM2bM0I8//qjly5crMjJSJpNJ999/v1599VXt3r1b+/fvl5+fn0PyBwDAHqinmR05ckTXr1+XdOvDpdu/nZqVypUrOyIsAICTo6Zmr1WrVvr55581ffp0bdq0SSdOnJCfn58aNWqkp59+Wv/617/k7e1tdJgAkC2upABQIIwbN04zZsxQ165dNXr0aKPDAQCgQKKeAgBgH9RUALAf1qQAYLiTJ0+qZcuWeuGFF5ScnJxpu9ls1saNGyVJtWvXdnR4AAAUCNRTAADsg5oKAI5FkwKA4SpWrKikpCRt3bpVn332mRITEy3bYmJiNGrUKB09elRBQUFq166dgZECAOC8qKcAANgHNRUAHIvpngA4hdWrV+vf//63UlNTVahQIVWqVEmpqak6ffq0EhMTFRgYqK+//lpNmzY1OlQAAJwW9RQAAPugpgKA49CkAOA0Tpw4oe+//147d+7UP//8I0kqW7asWrRooeeff17lypUzOEIAAJwf9RQAAPugpgKAY9CkAAAAAAAAAAAAhmBNCgAAAAAAAAAAYAgvowMo6E6ePKnExET5+fkpJCTE6HAAACiwqKkAANgHNRUAABQkNCnyKDExUfHx8UaHAQBAgUdNBQDAPqipAACgIGG6JwAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAM4WV0AAAAALCPmzdvatasWTp06JBq1aql3r17y8uL0z0AAAAAgPPir1YAAAAXMXv2bM2ZM0eStGvXLplMJvXt29fgqAAAAAAAyB7TPQEAALiIv/76K8ffAQAAAABwNjQpAAAAXERSUlKOvwMAAAAA4GxoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAMQZMCAAAAAAAAAAAYgiYFAAAAAAAAAAAwBE0KAAAAAAAAAABgCJoUAAAAAAAAAADAEF5GBwAAAICc7XmsrdISEu46LtHbS/Iw/e/3U6e166FHcryPh7+/Gvy2Js8xAgAAAABgC5oUAAAATi4tIUFpiYl3H+gVIMnzf7+b06y7HwAAAAAABmG6JwAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFYkwIAACCXbt68qVmzZunQoUOqVauWevfuLS8vTqsAAAAAAMgt/poGAADIpdmzZ2vOnDmSpF27dslkMqlv374GRwW4HxqGQP5yxP8x/h8DAAAqPwAAcCmO+LDjr7/+yvS7uzQp+DDJ+bjzc0LDEMhfjvg/xv9jAADgHn+9AICTcecPlID85ogPO5KSknL83ZU564dJ7vy+6qzPiSO4c8MQcARH/B/j/7Hj7HmsrdISEuy+Xw9/fzX4bY3d9wvHcudzKQDG490GAAzgzh8oAfktrx92dBu7TInJN3McE3cpJsPvZy/F6JkPF+V4Hz8fL80f3tHqOJyVs36Y5M7vq876nDiCOzcMAUdwxP8x/h87TlpCgtISE40OA07Knc+lABiPJoWboTMOd+Osr3l3/kAJyG95/bAjMfmmklJScxxj9vDM9Pvd7uMqnPXDJHd+X3XEc+Ks9RQACjLeW52POz8n7nwu5c7PO+As+B/nZuiMw5k44kTAWV/zzvohHwDreBSvpLS4yxl+L6g8/PyMDsEueF/NX0bUU2umJUn09pI8TP/7/dRp7XrokRzvw7QkAJyFs/6tkluuci4huc5zYgt3/tKDOz/vgLMw/p0ADuWMnXFnLVKO4KjcnfUxdsSJgDO+5h3FWZ93wBV4VGgkSTLHXJSpSCnL73Bt7vy+akQ9tWZaEm+vAEn/u7LJ25zmNlOZuPPrEXAER/wfc+e/VZwVz0n+ctZmAM87YDzOYt2MM37L0FmLlCM4KndnfYwdcSLgjK95R3HW592d8YFS3li72KMt36z2Kl5M9VYstzoWk4eHPCs9YPX4goL1OHLmSlcT5PY176z1tGbKTZ3z9Mzwu7ugzsPZWVNTpNzXFUfVFEf8H3PW99a8sPZ5t4UjnntXfE6cibM2A3je8xd/B8MavCJgOGctUo7gqNyd9THmRCB/Oevz7ogTFGc9CeIDpbyxerHHO75ZLSu+WZ2W4B7fvL4b1uPImStdTeAqr/k2ScmSpNOenqqUmmr53Z6ctaY46vXorPnD+VlTUyTJLHOm352hrjjrubSzs/Z5d2fu/L7qzp8BOOvz7s7TcMO5GP+/AXZh7bcV4q9m/CZe1NUEw7+l4s5FylG5O/oxzq9vO9/+rU9nfc07IndrOev/LUecoDjrSRB/7DqG911+d2WOyN3R63E40xU0zvq+mterCaypqbmtp5JjziM9JbXNh8bE7Zy1pjjq9eis+TuCs36gZA/OdM4qD6+cfzdIXv6P5dffKpLrXJ3oaNa+5tPueM2n3eU1b8s6R45+X3WmcylHy8/cc/vcO2s9ZRpuOAvnqP7IM6u/rVCsohR7KcPv+fktB2sKQm5PAiTbTgRc+Y8MZ2Ptt51z+83P27/16ayveUfk7qwNGms54gTFWU+CnPUDTlfjztO/OCJ3R6/HkV/vq7f2nbv3Vmf9MCmvVxNYVVMdXE/zU24XeDWipjjTObQz1lRHndc76wdK9pBfVyfacpWWsza/c/t/7PYPa531bxV3Zu1rvobZR1F+vv/7PTlZaTnUVVsWDXf0+6qjrkZ2xmlD8zP3gnA+YQ2m4Yaz4BNaN+OMHyzk9iTAVs74bYW8flOhoM/z6oofplkrL7kX9D96HHGCwkmQe3PE9C/OyhG5O+t6HHmtKQX5g3pHXE3grPXUEYyoKfl1Dm3Lh2nOWFMddV7vrB8ouRpn/BtVyv3/MZsaNG783uqsHHEu5Yzvq/Zg1bShTjq9myM46/PurHHB/dCkcDPO+MGCoz5McspvK+TxmwoFfZ5Xd/4wzRG5O/qPHqeaNgBuzREf2Dord87dFd9XnYmz1tO8csZvfVrLnRuyjjqv54Mbx3DW9xd3/lvFneXlXCq/vkQoOaauOGTKVCed3i2vuTvj+YQzTXUFWMM53g3g1mw5CXCVb4E5bN50Jz0RcOcP0xyRu6P/6HHEVFe4O6a2g7tyxfdV5L+CvFh8Xl/zBfmKXGc8r3dV7rzOkzv/rQLbWP0lQietKw6Z6cDB07tZyxFX5Dr6ec/PKVNt+UwOuBs+tQAM5Kh50531RADuKS+v+4L+7SRHcOX5swHACK56HlXQP0zLi4LcoHE0d17nCcgvzlpX3PmqVIfk7qTPO+/zcBY0KVDgFeRFhB11mb6zngjAPeXlde+sU5w501RXzJ8NAPbl7udRzriosS2LhtuyqLErNmhyy52nFQPyi7PWFXe+KtWd1/fK6/u8M051hYKJJgUKvIK8iLCjLiF21hMBuCeHvO4dPMWZtZfS5nYdGlumumIKDACwL3c/j3LGRY1tWTTcpkWNnfRbr47ElEeA/bl7XXFXzvq85/V9ngXTYS80KeA2nLVrDcD+nPVDhbzM68xUVwAAIzjjhypcjQwAQAHipOukwrnwqnASLHSa/5zxDywA+cNZP1TIy3yfTE0BAMAtXI0MAEDB4axfIoRz4VNwJ8FCpwBgP876oYI7L8gGAAAAAHA/zvolQjgXmhROgoVOAcD1ufOCbAAAAAAA9+OsXyKEc6FJ4SRY6BQAYA+cAAIAAAAAgILEw+gAAAAAAAAAAACAe6JJAQAAAAAAAAAADMF0Tw6w57G2SktIyHFMoreX5GH63++nTmvXQ4/keB+v4sVUb8Vyu8QIAAAAAAAAAICj0aRwgLSEBKUlJuY4xtsrQLeWVP3/v5vT7nqftISctwMAAAAAAAAA4MyY7slJ1Ey5mePvAAAAAAAAAAC4Gq6kcBJtkpIlSac9PVUpNdXyOwAAAAAAAAAAroomhZPwlNSWxgQAAAAAAAAAwI0w3RMAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAMQZMCAAAAAAAAAAAYgiYFAAAAAAAAAAAwhJfRAVjrypUrmjp1qsLCwnTu3Dn5+fmpXr16GjBggJo0aZJp/JYtWzRt2jQdPnxYiYmJqlKlirp3764uXbrIZDIZkAEAAAAAAAAAALhdgbiS4vjx43r66ac1c+ZMpaSkqEWLFipfvrw2bdqkPn36aN26dRnGz5kzR3379tX27dtVu3ZtNWnSRMePH9fIkSM1fPhwg7IAAAAAAAAAAAC3c/orKW7evKk333xT0dHReuGFFzRs2DB5enpKkhYtWqR3331Xw4cP15YtW+Tj46MTJ07oo48+UmBgoGbPnq2aNWtKks6dO6c+ffpo2bJlatGihZ544gkj0wIAAAAAAAAAwO05/ZUUv/32myIiIvTAAw9oxIgRlgaFJHXp0kUPP/ywAgMDdfDgQUnStGnTlJaWppdeesnSoJCkcuXK6f3335ckzZgxw7FJAAAAAAAAAACATJz+Sopff/1VktSvX78st3/33XcZfv/jjz8kSY8//nimsc2aNVNgYKD+/vtvXbp0SSVLlrRvsAAAAAAAAAAAwGpO36TYv3+/JKlBgwa6du2aVq1apcOHD8vLy0v333+/2rZta7m64tKlS7py5Yp8fX0VEhKSaV+enp6qUqWK9uzZo4iICJoUAAAAAAAAAAAYyC5NCrPZrCtXrujy5cu6ceOGfH19VbJkSZUtWzZP+01OTlZUVJR8fX114MABDR06VFevXrVsnzNnjurUqaPJkyerVKlSunDhgiQpODhYJpMpy30GBwdLkqKjo/MU253MZrNSU1Mz3Hb71FSu4M78ckLuroPcrUPursXa/N0ld0fneWdNdZfHOSvk7lrc+b2V3K1D7q4ju9ypqfblzq8xiZpqDXJ3LeR+d+6Suyvm6e5sblJcvHhRa9as0ebNm7V9+3bFx8dnGuPn56eGDRuqRYsW6tChg0qUKJGrY8TGxkqS0tLSNGjQINWvX19vvfWWQkJCdOTIEX388cf6+++/NXDgQC1YsEAJCQmSJH9//2z36evrK0mKi4vLVSx3k5CQoD179lh+9/Dw0H333WfXYxht3759SktLu+s4cid3V0Hu7pm7ZF3+7pR7o0aNHBrD7TXVnR7nO5G7e+YuuWb+5E7uOXGn3Kmp9uXOrzGJmkru2SN3cnclzvA3KvJfrpsUx48f18SJE7V27VqlpqbKbDZnOzYhIUGbN2/Wli1bNH78eHXs2FEvv/yyKlasaNWxkpOTJUkpKSmqWrWqvvvuO3l53Qr5vvvu08yZM9WuXTv9/fffWr9+fa6aIDnFDQAAAAAAAAAA8p/VTYqYmBh99tlnWrRokVJTU1W4cGE1bdpUjRo1UmhoqEJCQhQYGCh/f39dv35dV69e1YULF7Rr1y7t3LlTu3fv1qJFi7Rs2TJ17txZw4YNU+HChXM85u1XRPTs2dPSoEhXpEgRPf3005oxY4a2bt2qbt26SZISExOz3WdSUpIkKSAgwNrUreLv768aNWrYdZ/Opl69ekaHYBhyd0/k7r7cOX9nyJ2a6trI3T2Ru3sid+O5ek11lsfZKO6cP7m7J3J3T+6cuzuxqkmxefNmDR8+XNHR0WratKm6d++u1q1by9vbO8vxQUFBCgoKUtWqVdWsWTNJt6Zu+vnnn7Vw4UItWLBAmzZt0ieffKKmTZtme9zChQvLx8dHycnJqlChQpZj0m+/cuWKSpcuLenWAtrZuXjxoiSpVKlSd088F0wmk8vPh+bq+eWE3N0Tubsvd87fGXKnpro2cndP5O6eyN14rl5TXTk3a7hz/uTunsjdPblz7u7Ew5pB/fr1U7ly5TRnzhx9//33ateuXbYNiuwULlxYPXv21LJlyzRjxgwVKVJEL774Yo738fT0VPXq1SXJsij2ndIbEiVKlFCxYsVUunRpJSQk6MyZM5nGpqam6sSJE5Kk0NDQXMUPAAAAAAAAAADsy6omxdixYzV//ny7LUrSrFkzLVu2TB999NFdx7Zs2VKStHz58kzbzGazNmzYIElq3LhxhvFr167NNH7z5s2KiYlRnTp17H4lBQAAAAAAAAAAyB2rmhTPPPOM3Q9sMpnUuXPnu47r3r27AgMDtWXLFk2ePNmy4LXZbNaECRO0f/9+Va5cWa1atZIk9ejRQ15eXpo0aZL27dtn2c+5c+c0evRoSdIrr7xi93wAAAAAAAAAAEDuWL1wtlFKlSqlzz//XK+//rq++OILLVmyRKGhoTpy5IhOnTqlYsWK6bPPPpOPj48kqWbNmnrzzTf16aef6rnnnlPjxo3l6+ur8PBwxcfHq3v37nr88ccNzgoAAAAAAAAAAFjVpBg0aJCqVaumIUOG5HM4WXvkkUe0fPlyTZ48WVu2bNEff/yhkiVLqmvXrnr55ZczLardr18/hYSE6Pvvv9fevXtlMplUtWpV9ezZM1+uCgEAAAAAAAAAALlnVZNi3bp1unr1arbbly1bphIlSujhhx+2W2B3qly5ssaMGWP1+NatW6t169b5Fg8AAAAAAAAAAMgbq9akuJvhw4drypQp9tgVAAAAAAAAAABwE3ZpUkiyLGgNAAAAAAAAAABgDbs1KQAAAAAAAAAAAHKDJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABDeFk7cNeuXapVq1aW20wmU47b08ccPHgw9xECAAAAAAAAAACXZHWTwmw252ccAAAAAAAAAADAzVjVpBgzZkx+xwEAAAAAAAAAANyMVU2KTp065XccAAAAAAAAAADAzbBwNgAAAAAAAAAAMARNCgAAAAAAAAAAYAirmxRr1qxRp06d1KhRI3Xu3Fnr16/Pz7gAAAAAAAAAAICLs6pJsXjxYg0ZMkS+vr4aMmSIfHx8NGjQIC1btiyfwwMAAAAAAAAAAK7KqibF5MmTVaRIEU2fPl29evXSd999pyJFimjSpEn5HR8AAAAAAAAAAHBRVjUpzp8/rwoVKqhQoUKSpMKFC6tChQo6d+5cvgYHAAAAAAAAAABcl1VNilq1aunYsWM6ffq0JOn06dM6duyY6tSpk6/BAQAAAAAAAAAA12VVk2L48OHy9PRUt27d9MYbb6hbt27y9PTU8OHD8zs+AAAAAAAAAADgoqxqUjRs2FArVqxQhw4dlJycrKefflorV65UgwYN8jk8AAAAAAAAAADgqrysHVihQgWNHDkyP2MBAAAAAAAAAABuxKorKQAAAAAAAAAAAOzNqibFpEmTlJycbNcDJyYm6ptvvrHrPgEAAAAAAAAAQMFhdZOiffv2WrFiRZ4PePPmTS1cuFCPPfaYpk2bluf9AQAAAAAAAACAgsmqJsWCBQsUEBCgYcOGqV27dpoxY4aio6NzdaDIyEh9+umnatGihd5//30FBwdr8eLFNgUNAAAAAAAAAAAKPqsWzq5Zs6aWLl2q6dOna8qUKfr000/12WefqWbNmmrUqJFCQ0NVqVIlBQYGys/PTzExMbp69arOnz+v3bt3a+fOnTp79qzMZrOKFCmiN954Q/3795eXl9XrdgMAAAAAAAAAABdjdZfAy8tLL7/8sp599ll99913Wrx4sQ4ePKiDBw/KZDJlez+z2SxJKlq0qHr16qU+ffqoSJEieY8cAAAAAAAAAAAUaLm+lCEoKEjDhg3T4MGDtWnTJm3dulXh4eE6e/asEhISLOO8vb1VuXJlNWzYUI888ogeeeQR+fj42DV4AAAAAAAAAABQcNk835Kvr69at26t1q1bW25LSEjQjRs35OPjo6JFi8rDw6olLwAAAAAAAAAAgBuy66IQ/v7+8vf3t+cuAQAAAAAAAACAi+JSBwAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABjCbk2KK1euaMeOHQoLC5MkpaWlKS4uzl67BwAAAAAAAAAALsYrrzvYunWrvvzyS+3bt0+SZDKZdPDgQUVFRalTp07q2bOnhgwZIpPJlOdgAQAAAAAAAACA68jTlRRz5szRSy+9pL1798psNlv+SdL58+cVGxurqVOn6t///rddggUAAAAAAAAAAK7D5ibFwYMH9cknn8jDw0P9+vXTihUr1KBBA8v2e++9V4MHD5anp6dWr16t5cuX2yNeAAAAAAAAAABsdvjwYX300Ufq0KGD7r//ft17771q0aKF+vXrpx9//FGJiYlGh5gvatSooRo1amjLli1Gh5KBzU2K6dOnKy0tTSNGjNBbb72l6tWry8Pjf7vz8/PTq6++qg8++EBms1lLliyxS8AAAAAAAAAAANhiwoQJ6tSpk2bPnq3z58+rYsWKqlWrljw8PLRx40aNHj1a7dq104EDB4wO1W3Y3KTYvn27ihYtqh49euQ4rkuXLgoKCtKhQ4dsPRQAAAAAAAAAAHmyePFiTZw4UX5+fvrqq6+0bds2LV26VAsWLFBYWJhWrVqlBg0a6J9//tFLL72kK1euGB2yW7C5SXHlyhVVrFjxrgtim0wmlS9fXnFxcbYeCgAAAAAAAACAPJk8ebIkadiwYWrXrp08PT0zbK9ataomTZqkEiVK6OrVq5o1a5YRYbodm5sUgYGB+ueff6wae+HCBQUGBtp6KAAAAAAAAAAAbHb9+nWdPn1aklS/fv1sxwUFBalNmzaSpH379jkkNnfnZesd69atq40bN2rLli1q1qxZtuPCwsJ08eJFPfLII7YeCgAAAAAAAAAAm3l5/e+j8LCwMNWuXTvbsa+//rp69+6tEiVKZLj95s2bWrlypVavXq0DBw7o2rVr8vLyUqlSpdSkSRP17dtXISEhGe7Tq1cvbdu2TTNnzlThwoU1adIk7dq1S0lJSQoJCVGfPn3UsWNHmc1mLVq0SPPmzdOJEyfk6emp+vXr64033lCDBg0y7PPRRx9VVFSUli1bpgsXLmjy5MmKiIiQj4+PatSood69e1saLda6dOmSZsyYoT/++ENRUVHy8PBQlSpV1KFDB/Xs2VO+vr652l9u2Nyk6Nq1qzZs2KCRI0fq22+/Vc2aNTON2bp1q0aMGCGTyaTOnTvnKVAAAAAAAAAAAGxRqFAhNWzYULt27dLXX3+tM2fO6F//+pcaNmyYadqn4OBgBQcHZ7gtMTFRAwYMUHh4uCSpfPnyCg0N1eXLlxUZGanIyEitWLFCc+bMybIBsnr1ai1evFg+Pj665557dO7cOR08eFBvv/224uPjtWvXLq1YsUIlSpRQSEiIjh49qs2bN2v79u1auHBhlp+/L168WLNnz5aPj4+qV6+uS5cuKTw8XOHh4erVq5dGjhxp1WOzc+dODRw4UNeuXZO3t7fuuecemc1mHThwQPv379fPP/+s7777LtNjYi82T/fUpk0bPfnkkzp37pw6deqkp556SkePHpUkDR48WB06dNCLL76oa9euqWXLlmrXrp3dggYAAAAAAAAAIDfee+89BQQEyGw2a+nSpXr++efVuHFjDRgwQFOnTtXevXuVlpaW5X2nTZum8PBwFS9eXAsXLtTvv/+uxYsX648//tDChQsVHBys+Ph4y7oXd5o/f75at26tDRs2aOnSpdqwYYMeeughSdLo0aO1du1ajR8/Xlu2bNHSpUu1Zs0alS1bVsnJyfrhhx+y3Ofs2bPVrFkz/fHHH1qyZIn+/PNPjR49Wl5eXpo9e7ZWrlx518fkwoULlgZF165dtWXLFq1cuVK//PKL1q5dq/r16+vw4cMaMmSIdQ+yDWxuUkjSuHHj1L9/f3l7e+vo0aOKiYmR2WzWmjVrdPz4cXl4eKh79+766quv7BUvAAAAAAAAAAC5Vrt2bS1cuFCNGjWy3BYbG6s///xTn3/+ubp27aqHHnpIX3zxhRISEjLcd8uWLfLw8NCgQYNUr169DNvq1aun5557TpJ05MiRLI9drFgxjR07VkWKFJEk+fr6qm/fvpKktLQ09evXT88884xlfPny5dWlSxdJ0oEDB7LcZ7ly5fTNN99YpqUymUzq2rWrXnrpJUnSN998c9fHZPr06bp27ZoeffRRjR49OsPa0pUqVdK3336rwoULa8eOHfrzzz/vuj9b2DzdkyR5enpq6NCheuGFF7RhwwYdOXJEsbGx8vf3V0hIiFq0aKFy5crZK1YAAAAAAAAAAGxWrVo1zZ07V4cOHdK6deu0efNm7d+/XykpKZKky5cva/LkyVq1apVmz56tMmXKSJLmzZunlJQUmUymLPfr7+8v6da0UFlp0qSJAgICMtxWvnx5y88tWrTIdJ9SpUpJutVIyUrXrl1VqFChTLd3795dU6ZM0cmTJ3XixAlVqVIly/tL0rp16yRJTz/9dJbbS5YsqebNm2vNmjUKCwvLMs68srlJMX78eIWEhOiZZ55RiRIl1KlTJ3vGBQAAAAAAAABAvqhVq5Zq1aql119/XQkJCdq1a5c2bdqkn3/+WZcvX9bp06c1ePBgzZ8/33Ifb29vXb9+XXv27FFkZKTOnDmjyMhIHTp0SJcuXZKkbKeLSm923M7b29vyc1BQUKbtty/2nZU7r+hIV65cORUpUkQxMTGKjIzMtkkRFxenqKgoSdK3336rWbNmZTkufcyJEydyjMdWNjcpli1bpuTkZD355JP2jAcAAAAAAAAAAIfx9/dX8+bN1bx5cw0ePFjvvPOOfvnlF+3Zs0cHDhxQnTp1FBsbq48//lgrVqywXHUh3Wo01KlTR7Vq1dLGjRtzPEZOsrtCIydFixbNdltAQIBiYmJ048aNbMfcfoVGdtNU3S4mJiZ3AVrJ5iZFbGysqlWrdtcHFwAAAAAAAAAAI73//vv666+/1KlTJ7366qvZjvPz89OHH36otWvXKiUlRSdPnlSdOnU0cOBAhYeHy8/PT88//7zq16+v6tWrq3LlyvL29taCBQtybFLkhzvXzbhdegMifb2KrNz+2f6KFSsUGhpqv+ByweaFs+vUqaOTJ09aLmMBAAAAAAAAAMAZJSUl6dSpU5Y1GHJSuHBhy1oPQUFB2rNnj8LDwyVJU6ZM0fDhw9W+fXtVq1bNMmXT+fPn8y/4bGR39cPp06cVFxcn6dYaHNkJDAxUyZIlJUnHjh3LdlxERIQOHTqk69ev5yHa7NncpPjoo49UuHBh9ezZU0uXLtWpU6cUHx+vtLS0bP8BAAAAAAAAAOBo6QtD79+/X0uWLMlx7KZNm3Tt2jUVK1ZM9evX19mzZy3b6tatm2l8QkKCfvnlF0lSamqqHaPO2ZIlS7L83H3evHmSpAYNGqhs2bI57qNly5aSpB9//DHLfcXExKh3797q2LGjfvjhh7wHnQWbmxTvvvuu/P39derUKb3zzjtq166dGjVqpDp16mT5L6snDwAAAAAAAACA/Na8eXO1bdtWkjRy5Eh9/PHHGZoP0q2rLRYvXqwhQ4ZIkoYMGaJChQplWHh64sSJGdakOHbsmPr376/IyEhJOU/BZG/79+/Xe++9ZzlmWlqafvzxR33//feSpDfffPOu+xgwYIACAgK0c+dO/ec//9GVK1cs26KiojRgwABdu3ZNRYoUUc+ePfMlD5vXpNizZ4/lZ7PZbI9YAAAAAAAAAADIF5999pkCAgK0bNkyzZo1S7NmzVK5cuVUokQJJSUlKTIyUsnJyfL29tbQoUP13HPPSZJq166t9u3b69dff9WMGTO0ZMkSVahQQdeuXbM0Opo3b67NmzcrLi5OsbGxKly4cL7nExoaqkWLFunXX39VlSpVdP78eUVHR8vDw0MjRoxQ06ZN77qPypUr68svv9Sbb76plStXas2aNapWrZpSUlIUGRmpmzdvKiAgQFOnTs1xfYu8sLlJMWvWLHvGAQAAAAAAAABAvvHx8dHYsWPVs2dPrVq1SuHh4bpw4YIOHz4sf39/hYSE6KGHHlKXLl0yXD0hSZ9//rmaNWumBQsW6PTp04qIiFDx4sXVqlUrde/eXS1btlSrVq107tw5/f7775bppfJT7969FRAQoBkzZujIkSMKDAxU27Zt9dJLL6l+/fpW76dFixb65Zdf9P3332vjxo06efKkUlNTVb58eTVv3lwvvviiKlasmG952NykaNy4sT3jAAAAAAAAAAAg391777269957c3UfT09Pde3aVV27ds12TFhYWKbbZs+ene34ChUqKCIiItvtnTt3VufOnXOMq0OHDurQoUOOY9LldKyyZctqxIgRGjFihFX7sieb16QAAAAAAAAAAADIC5uvpFi2bFmu79OxY0dbDwcAAAAAAAAAAFyMzU2K4cOHy2QyWTXWbDbLZDLRpAAAAAAAAAAAABY2NynKlSuX7baEhATFxMTo5s2bMplMat26tQICAmw9FAAAAAAAAAAAcEE2Nyl+//33HLcnJSVp/fr1Gj16tKKjozVnzhxbDwUAAAAAAAAAAHT3z+YLmnxbONvX11dPPPGEPv30U+3bt0/Tp0/Pr0MBAAAAAAAAAIACKN+aFOkeeughlStXTitWrMjvQwEAAAAAAAAAgAIk35sUklSsWDGdPXvWEYcCAAAAAAAAAAAFRL43KS5evKhjx46xcDYAAAAAAAAAAMjA5oWzz5w5k+02s9ms5ORknThxQl9//bVSUlJ0//3323ooAAAAAAAAAADggmxuUjz++ONWjTObzfLy8lL//v1tPRQAAAAAAAAAAHBBNk/3ZDab7/pPkurUqaNJkyapXr16dgsaAAAAAAAAAAAUfDZfSbF+/fqcd+zlpWLFisnX19fWQ+TojTfe0Jo1azRmzBh17tw50/YtW7Zo2rRpOnz4sBITE1WlShV1795dXbp0kclkypeYAAAAAAAAAACA9WxuUpQvX96eceTKwoULtWbNmmy3z5kzRx9++KG8vb3VpEkTeXt766+//tLIkSO1Y8cOjRs3zoHRAgAAAAAAAACArNg83VPv3r318ccfWzX29ddft3oNi7s5efKkPvnkk2y3nzhxQh999JECAwO1aNEiTZ8+XZMnT9aqVatUqVIlLVu2TKtWrbJLLAAAAAAAAAAAwHY2Nym2bdumgwcPWjX22LFjOn/+vK2HskhOTtbQoUPl4eGh2rVrZzlm2rRpSktL00svvaSaNWtabi9Xrpzef/99SdKMGTPyHAsAAAAAAAAAAK4iMjJSDRo0sPriBHuxarqn48ePa8qUKZluj4yM1LBhw7K9n9ls1rlz53Ty5EkFBwfbHuX/98UXX+jAgQMaP3681qxZk2WT5I8//pCkLK/caNasmQIDA/X333/r0qVLKlmyZJ5jAgAAAAAAAAAUHHsea6u0hASjw7CKh7+/GvyW/dIH9nLp0iUNHDhQCQY8LlY1KapWrarIyEjt27fPcpvJZNLly5e1fPlyqw7UsWNHmwJMt2XLFs2cOVMdOnTQM888k+WaFJcuXdKVK1fk6+urkJCQTNs9PT1VpUoV7dmzRxERETQpAAAAAAAAAMDNpCUkKC0x0egwnMahQ4c0ePBgnTp1ypDjW71w9nvvvae5c+dafl+6dKlKliyphx9+ONv7mEwmBQQEqHbt2nlqUly5ckXDhg1TmTJlNGrUqGzHXbhwQZIUHBwsk8mU5Zj0Kzqio6NtjicrZrNZqampGW7z9PS06zGMdmd+OSF310Hu1iF312Jt/u6Su6PzvLOmusvjnBVydy3u/N5K7tYhd9eRXe7UVPty59eYRE21Brm7FnK/O3fJ3RXzNMr169c1depUzZo1S8nJyapQoYLOnj3r8DisblLce++9GjNmjOX3pUuXqnLlyhluyy/vvPOOLl++rB9++EGBgYHZjku/FMXf3z/bMb6+vpKkuLg4u8aYkJCgPXv2WH738PDQfffdZ9djGG3fvn1KS0u76zhyJ3dXQe7umbtkXf7ulHujRo0cGsPtNdWdHuc7kbt75i65Zv7kTu45cafcqan25c6vMYmaSu7ZI3dydyXO8DeqK5s1a5a+++47lSlTRh988IEOHDigb775xuFxWN2kuNOsWbNUpEgRe8aSpTlz5igsLEz9+/dX48aNcxzr4WH9OuBmszmvoQEAAAAAAAAAUCCVKVNGb7/9tnr06CE/Pz8dOHDAkDhsblLcrWFwp8TERPn5+eXqPkePHtW4ceNUp04dDR48+K7jCxUqZDlWdpKSkiRJAQEBuYrlbvz9/VWjRg277tPZ1KtXz+gQDEPu7onc3Zc75+8MuVNTXRu5uydyd0/kbjxXr6nO8jgbxZ3zJ3f3RO7uyZ1zd4Rnn33W6BAk5aFJId26GmHDhg06cuSIEhMTM116k5qaqoSEBF24cEHh4eEKDw/P1f4/++wzJSUlyc/PTyNGjMiwLb2rs2DBAm3ZskUPPPCA2rZtK+nWAtrZuXjxoiSpVKlSuYrlbkwmk8vPh+bq+eWE3N0Tubsvd87fGXKnpro2cndP5O6eyN14rl5TXTk3a7hz/uTunsjdPblz7u7E5iZFUlKS+vXrpx07dtx1rNlsznYh65zEx8dLknbu3KmdO3dmOWb37t3avXu3vLy81K1bN5UuXVoXLlzQmTNnVLFixQxjU1NTdeLECUlSaGhoruMBAAAAAAAAAAD2Y/0iDneYO3eutm/fLrPZrAoVKqhOnToym80qX768GjRooLJly1rWfbjvvvv0/fff5/oYs2fPVkRERJb/WrduLUkaM2aMIiIiNHbsWElSy5YtJUlr167NtL/NmzcrJiZGderUsfuVFAAAAAAAAAAAIHdsblKsWbNGJpNJb731ln777TfNnTtXvr6+ql27tubNm6fff/9d06dPV2BgoI4cOaIKFSrYM+5s9ejRQ15eXpo0aZL27dtnuf3cuXMaPXq0JOmVV15xSCwAAAAAAAAAACB7NjcpTp48qSJFiqhv376SJB8fH9WoUSPD9E/NmzfXe++9p7i4OP3www95j9YKNWvW1JtvvqmYmBg999xz6tu3r1555RV16NBBp0+fVvfu3fX44487JBYAAAAAAAAAAJA9m5sUcXFxqlChQobFS6pVq6arV69aFqeWpPbt26to0aLasmVL3iLNhX79+unbb79Vw4YNtXfvXm3fvl1Vq1bV2LFj9cEHHzgsDgAAAAAAAAAAkD2bF84uVKiQUlJSMtyWvlD18ePHLWs+eHp6qkKFCjp58mQewszs22+/zXF769atLetWAAAAAAAAAAAA52Nzk6JSpUo6evSoYmJiVKRIEcttZrNZERERevDBBy1jY2NjlZaWlvdoAQAAAAAAAADIAw9/f6NDsFpBitVWNjcpmjVrpr///lvvvvuuRo8eraJFi6p27dqSpMWLF+u5556Tr6+vdu7cqVOnTikkJMRuQQMAAAAAAAAAYIsGv60xOgTcxuYmxfPPP6958+bpt99+04YNG7Rt2zaFhISoVq1aOnz4sDp37qyqVatq06ZNMplMGa6sAAAAAAAAAAAAzuP111/X66+/7vDj2rxwdnBwsKZOnaoKFSrI19dXPj4+kqRRo0bJ19dXx48f12+//ab4+HgVL15cAwcOtFvQAAAAAAAAAACg4LP5SgpJatCggdasWaPDhw9bbqtfv74WL16sWbNm6ezZs6pSpYpefPFFlSxZMs/BAgAAAAAAAAAA12Fzk+KHH35Q9erV1axZM8taFOmqVq2q//73v3kODgAAAAAAAAAAuC6bmxTfffedYmJi9Oeff6po0aL2jAkAAAAAAAAAALgBm9ekuHbtmqpUqUKDAgAAAAAAAAAA2MTmJkWVKlV09uxZxcXF2TMeAAAAAAAAAADgJmxuUnzwwQdKSUlRv379tG3bNiUnJ9szLgAAAAAAAAAA4OJsXpNizpw5qly5svbs2aM+ffrIw8NDRYoUkZ+fX5bjTSaTwsLCbA4UAAAAAAAAAAC4FpubFL/88kuG31NTU3Xt2rVsx5tMJlsPBQAAAAAAAAAAXJDNTYoxY8bYMw4AAAAAAAAAAOBmbG5SdOrUyZ5xAAAAAAAAAAAAN2PzwtkAAAAAAAAAAAB5kecmRXJysn766Se9/PLLeuyxx9S0aVNJ0pUrVzRixAgdO3Ysz0ECAAAAAAAAAADXY/N0T5J08uRJvfrqqzp16pTMZrOk/y2Qfe7cOS1dulSrVq3S559/rjZt2uQ9WgAAAAAAAAAA4DJsvpIiJiZGL730kiIjI1W2bFn17dtXlSpVsmwvUqSIqlSpoqSkJA0ZMkRHjhyxS8AAAAAAAAAAACDvfv75Z/Xq1UsPPPCA6tatqxYtWmj48OE6ceKEw2Kw+UqK77//XufOnVPLli311VdfydfXV3v37tWZM2ckSZUrV9aKFSs0ePBgrVu3TjNnztSYMWPsFjgAAAAAAAAAALnVbewyJSbfNDoMq/j5eGn+8I5236/ZbNZbb72llStXytvbW3Xr1lVQUJAOHz6spUuXavXq1Zo0aZIefPBBux/7TjY3KdauXSsvLy99/PHH8vX1zXKMp6enPvzwQ23YsEHh4eE2BwkAAAAAAAAAgD0kJt9UUkqq0WEYavny5Vq5cqVKlSql6dOnKzQ0VJKUmpqqCRMmaPLkyXrrrbf022+/KSAgIF9jsXm6p7Nnz6p69eoqUaJEjuOCgoIUEhKi6OhoWw8FAAAAAAAAAADsZNGiRZKkoUOHWhoU0q0LD4YMGaLq1avr0qVL2rJlS77HYnOTwmQyKTEx0aqxaWlp8vHxsfVQAAAAAAAAAADATgIDA1W1alU1atQo0zaTyaSQkBBJ0sWLF/M9Fpune6pcubKOHj2q6OhoBQcHZzvun3/+0fHjx1WzZk1bDwUAAAAAAAAAAOxk4sSJ2W5LTU3VgQMHJElly5bN91hsvpKiTZs2unnzpj788EOZzeYsxyQnJ+vdd9+V2WzWo48+anOQAAAAAAAAAAAg/82dO1dRUVEqXry4mjZtmu/Hs/lKij59+mjx4sVat26dnn32WT3xxBO6fPmyJOnPP//U0aNHtXDhQp06dUrBwcHq1auX3YIGAAAAAAAAAAD2tXXrVo0fP17SrfUq/P398/2YNjcpChcurGnTpunVV1/V/v37LZd/SNIrr7wiSTKbzQoODtakSZNUtGjRvEcLAAAAAAAAAADsLiwsTEOGDFFycrJ69OihZ5991iHHtblJIUlVq1bVzz//rAULFmjdunU6evSoYmNj5e/vr5CQELVq1Uo9e/ZUYGCgveIFAAAAAAAAAAB2NHv2bI0ZM0apqanq1auX3n33XYcdO09NCkny9/dXnz591KdPH3vEAwAAAAAAAAAAHCB93en58+fLZDJp6NChGjBggENjyHOT4nbx8fGKiYlR8eLF5ePjY89dAwAAAAAAAAAAO0lMTNRrr72mTZs2yc/PT+PGjVO7du0cHkeemxRRUVGaNm2a1q9fr0uXLllur1Spktq1a6e+ffuqWLFieT0MAAAAAAAAAACwg9TUVEuDIigoSFOmTFG9evUMicUjL3detWqVOnTooPnz5ys6Olpms9ny79SpU5o6dao6dOigHTt22CteAAAAAAAAAACQB5MmTdKmTZsUEBCgWbNmGdagkPJwJcWhQ4f09ttvKyUlRffdd5+6deummjVrKiAgQDExMTp06JB++ukn7d+/X6+//rqWLVum0qVL2zN2AAAAAAAAAACQC9evX9f06dMlSaVKldKUKVOyHfvMM8/o4Ycfztd4bG5STJs2TSkpKerevbtGjRqVaXudOnX0r3/9S++8846WLl2qGTNmaMSIEXmJFQAAAAAAAACAPPHzsetSzfkqP2Ldtm2b4uPjJUmRkZGKjIzMdmzdunWdt0mxa9cuBQYG6p133sl2jMlk0nvvvac1a9YoLCyMJgUAAAAAAAAAwFDzh3c0OgRDPfbYY4qIiDA6DAub16S4evWqKleuLB8fnxzHBQQEqGrVqrpw4YKthwIAAAAAAAAAAC7I5iZF+fLldebMGd28efOuY8+fP68yZcrYeigAAAAAAAAAAOCCbG5SdO3aVdeuXdOXX36Z47iffvpJ0dHR6tSpk62HAgAAAAAAAAAALsjmNSleeOEFHT58WNOnT9eZM2f0wgsv6N5775WX161dHj9+XIsWLdLs2bMVGhqqxx57TGfOnMm0n4oVK9oePQAAAAAAAAAAKLBsblI0btzY8vPatWu1du1amUwm+fv7KykpSampqZbtR48e1ZNPPplpHyaTSQcPHrQ1BAAAAAAAAAAAUIDZ3KS4ceNGptvMZrPi4uKs3ofZbLb18AAAAAAAAAAAoICzuUmxfv16e8YBAAAAAAAAAADcjM1NivLly9szDgAAAAAAAAAA4GY8jA4AAAAAAAAAAAC4J5uvpJCkpKQk/frrrzp48KBiY2NzXGPCZDLpk08+ycvhAAAAAAAAAACAC7G5SXHx4kX16tVLp0+flpT9Itgmk0lms5kmBQAAAAAAAAAAyMDmJsXnn3+uU6dOydPTU40aNVKpUqXk7e1tz9gAAAAAAAAAAIALs7lJsWnTJplMJn333Xd68MEH7RkTAAAAAAAAAABwAzYvnH3jxg1Vq1aNBgUAAAAAAAAAALCJzU2KsmXLKjEx0Z6xAAAAAAAAAAAAN2Jzk6J9+/aKiorSgQMH7BkPAAAAAAAAAABwEzY3KV555RVVqVJFQ4YM0fbt2+0ZEwAAAAAAAAAAcAM2L5zt7++v9957T3379lXv3r3l5+en4sWLy2QyZTneZDJp3bp1NgcKAAAAAAAAAABci81Nij179mjAgAEym80ym81KSEhQQkJCtuOza14AAAAAAAAAAAD3ZHOT4uuvv1ZSUpJKlSqlTp06qXz58vL29rZnbAAAAAAAAAAAwIXZ3KT4+++/5e/vr4ULF6p06dL2jAkAAAAAAAAAALgBmxfOvnnzpkJCQmhQAAAAAAAAAAAAm9jcpAgNDdWFCxeUlpZmz3gAAAAAAAAAAICbsLlJ0atXL12+fFkzZ860ZzwAAAAAAAAAAMBN2LwmRfv27bV792599tln2rZtmx555BGVLVtW/v7+2d7nwQcftPVwAAAAAAAAAADAxdjcpKhTp47l5w0bNmjDhg05jjeZTDp48KCthwMAAAAAAAAAAC7G5iaF2WzO1/EAAAAAAAAAAMC12dykOHz4sD3jAAAAAAAAAAAAbsbmhbMBAAAAAAAAAADywm5NiitXrmjHjh0KCwuTJKWlpSkuLs5euwcAAAAAAAAAAC7G5ume0m3dulVffvml9u3bJ+l/C2RHRUWpU6dO6tmzp4YMGSKTyZTnYAEAAAAAAAAAgOvI05UUc+bM0UsvvaS9e/fKbDZb/knS+fPnFRsbq6lTp+rf//63XYIFAAAAAAAAAACuw+YmxcGDB/XJJ5/Iw8ND/fr104oVK9SgQQPL9nvvvVeDBw+Wp6enVq9ereXLl9sjXgAAAAAAAAAA4CJsblJMnz5daWlpGjFihN566y1Vr15dHh7/252fn59effVVffDBBzKbzVqyZIldAgYAAAAAAAAAAK7B5ibF9u3bVbRoUfXo0SPHcV26dFFQUJAOHTpk66EAAAAAAAAAAIALsrlJceXKFVWsWPGuC2KbTCaVL19ecXFxth4KAAAAAAAAAAC4IJubFIGBgfrnn3+sGnvhwgUFBgbaeigAAAAAAAAAAOCCbG5S1K1bV5cvX9aWLVtyHBcWFqaLFy+qbt26th4KAAAAAAAAAAC4IJubFF27dpXZbNbIkSN1+PDhLMds3bpVI0aMkMlkUufOnW0OEgAAAAAAAAAAuB4vW+/Ypk0bPfnkk1q5cqU6deqkatWq6fz585KkwYMH69ixYzpx4oTMZrNatWqldu3a5SnQn3/+WYsWLdLhw4eVkJCgEiVK6MEHH9SAAQNUpUqVTONXrVqlWbNm6cSJE0pNTVXNmjXVu3dvtW3bNk9xAAAAAAAAAAAA+7DqSorevXvr448/znT7uHHj1L9/f3l7e+vo0aOKiYmR2WzWmjVrdPz4cXl4eKh79+766quvbA7QbDZr6NChGjZsmHbv3q2qVavqkUcekaenp5YuXarOnTtr69atGe4zfvx4vfnmm4qIiFDDhg1Vv3597d27V2+88UaeYgEAAAAAAAAAAPZj1ZUU27ZtU2pqaqbbPT09NXToUL3wwgvasGGDjhw5otjYWPn7+yskJEQtWrRQuXLl8hTg8uXLtXLlSpUqVUrTp09XaGioJCk1NVUTJkzQ5MmT9dZbb+m3335TQECAtmzZounTp6t8+fL68ccfLcc/fPiwXnjhBX377bdq2bKl6tevn6e4AAAAAAAAAABA3tg83dPtSpQooU6dOtljV5ksWrRIkjR06FBLg0K61SAZMmSI1q9fr6NHj2rLli1q06aNJk+eLEl68803MzRIatasqSFDhuiDDz7QjBkzuKICAAAAAAAAAACD2bxwtqMEBgaqatWqatSoUaZtJpNJISEhkqSLFy8qNjZWO3bskLe3tx599NFM4x9//HGZTCZt2LBBaWlp+R47AAAAAAAAAADInl2upMhPEydOzHZbamqqDhw4IEkqW7asjh8/rtTUVFWsWFGFChXKND4oKEglS5ZUdHS0Tp8+rXvuuSe/wgYAAAAAAAAAAHfh9E2KnMydO1dRUVEqXry4mjZtqo0bN0qSSpcune19goODFR0drejoaLs2Kcxmc6Z1Ozw9Pe22f2eQ1bok2SF310Hu1iF312Jt/u6Su6PzvLOmusvjnBVydy3u/N5K7tYhd9eRXe7UVPty59eYRE21Brm7FnK/O3fJ3RXzdHdWNyn279+v1q1b23wgk8mkdevW2Xz/O23dulXjx4+XdGu9Cn9/f8XHx0uS/P39s72fr6+vJFnG2ktCQoL27Nlj+d3Dw0P33XefXY9htH379lk1TRa5k7urIHf3zF2yLn93yj2rKRfz0+011Z0e5zuRu3vmLrlm/uRO7jlxp9ypqfblzq8xiZpK7tkjd3J3Jc7wNyryn9VNiuTkZEVFRdl8IJPJZPN97xQWFqYhQ4YoOTlZPXr00LPPPispd1001qQAAAAAAAAAAMBYVjcpypYtq86dO+dnLFaZPXu2xowZo9TUVPXq1UvvvvuuZVv6OhSJiYnZ3j8pKUmSFBAQYNe4/P39VaNGDbvu09nUq1fP6BAMQ+7uidzdlzvn7wy5U1NdG7m7J3J3T+RuPFevqc7yOBvFnfMnd/dE7u7JnXN3J7lqUgwaNCg/Y8nRzZs39eGHH2r+/PkymUwaOnSoBgwYkGFM+loU0dHR2e7n4sWLkqRSpUrZNT6TyeTy86G5en45IXf3RO7uy53zd4bcqamujdzdE7m7J3I3nqvXVFfOzRrunD+5uydyd0/unLs7KRALZycmJuq1117Tpk2b5Ofnp3Hjxqldu3aZxlWrVk1eXl46c+aMkpKSLOtPpLty5YouX74sf39/VapUyVHhAwAAAAAAAACALHgYHcDdpKamWhoUQUFBmj17dpYNCunWothNmzZVcnKywsLCMm1fs2aNzGazHnnkEbpwAAAAAAAAAAAYzOmbFJMmTdKmTZsUEBCgWbNm3XUest69e0uSxo4dq1OnTlluP3z4sL766itJyjRNFAAAAAAAAAAAcDynnu7p+vXrmj59uqRba0hMmTIl27HPPPOMHn74YbVo0UI9evTQ3Llz9dRTT6lp06ZKTU1VeHi4UlJSNHToUNWtW9dRKQAAAAAAAAAAgGxY1aQYM2aMSpQokd+xZLJt2zbFx8dLkiIjIxUZGZnt2Lp16+rhhx+WJL3//vuqW7eu5s2bp23btsnX11cNGjRQ37591bp1a0eEDgAAAAAAAAAA7sKqJkWnTp3yO44sPfbYY4qIiMj1/Uwmk/71r3/pX//6Vz5EBQAAAAAAAAAA7MHp16QAAAAAAAAAAACuiSYFAAAAAAAAAAAwBE0KAAAAAAAAAABgCJoUAAAAAAAAAADAEDQpAAAAAAAAAACAIWhSAAAAAAAAAAAAQ9CkAAAAAAAAAAAAhqBJAQAAAAAAAAAADEGTAgAAAAAAAAAAGIImBQAAAAAAAAAAMARNCgAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAMQZMCAAAAAAAAAAAYgiYFAAAAAAAAAAAwBE0KAAAAAAAAAABgCJoUAAAAAAAAAADAEDQpAAAAAAAAAACAIWhSAAAAAAAAAAAAQ9CkAAAAAAAAAAAAhqBJAQAAAAAAAAAADEGTAgAAAAAAAAAAGIImBQAAAAAAAAAAMARNCgAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAMQZMCAAAAAAAAAAAYgiYFAAAAAAAAAAAwBE0KAAAAAAAAAABgCJoUAAAAAAAAAADAEDQpAAAAAAAAAACAIWhSAAAAAAAAAAAAQ9CkAAAAAAAAAAAAhqBJAQAAAAAAAAAADEGTAgAAAAAAAAAAGIImBQAAAAAAAAAAMARNCgAAAAAAAAAAYAiaFAAAAAAAAAAAwBA0KQAAAAAAAAAAgCFoUgAAAAAAAAAAAEPQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhaFIAAAAAAAAAAABD0KQAAAAAAAAAAACGoEkBAAAAAAAAAAAM4WV0APnl5MmTmjhxonbu3KnLly+rTJkyat++vQYMGKBChQoZHR4AAAAAAAAAAG7PJa+k2Ldvnzp37qwVK1YoODhYLVu2VHx8vCZPnqzu3bsrJibG6BABAAAAAAAAAHB7LtekSElJ0ZAhQxQfH6+xY8dqwYIFmjBhgtatW6dHH31UR44c0eeff250mAAAAAAAAAAAuD2Xa1L88ssvioqKUvPmzdWpUyfL7X5+fvrkk08UEBCgRYsW6caNGwZGCQAAAAAAAAAAXK5JERYWJkl6/PHHM20rXry4mjRpopSUFG3atMnRoQEAAAAAAAAAgNu4XJPiyJEjkqQaNWpkub169eqSpIiICIfFBAAAAAAAAAAAMvMyOgB7u3DhgiSpdOnSWW4PDg6WJF28eNGuxzWbzUpNTc1wm6enpyTJw9/frsdK5+HvZ/nZzyd/nsrb93tnfjkhd3LPD+R+C7nnD1vyd5fc0/N0lDtran4/zrf27Zz/x8jdPXOXXOP9hdxvIXfruEvurl5TneVxzoor5H7nvp2lppL7Le6W+619O+f/eXJ3/dwdXU+R/0xms9lsdBD2VKtWLaWlpWnr1q0KCgrKtH3BggV677331K5dO3311Vd5Pt6ePXuyfaMICAjI8/6dSXx8vNVjyd11kLt1yN21WJu/u+QeEBAgPz8/hYSE5Ouxs6up7vI4Z4XcXYs7v7eSu3XI3XVklzs11b7c+TUmUVOtQe6uhdzvzl1yd1Q9heO43JUUnp6eSktLu+s4e/VmcjpWbk6YXA25uydyd0/k7voclWd2NdVdHueskLv7cuf8yd09uUvu1FTjkLt7Inf3RO6uz13ydCcu16QoVKiQrl27pqSkpCy3JyYmSrJfZ9Hb21spKSny8PCQr6+vXfYJAICz8fPzu/ugPKKmAgDcATUVAIC8c0Q9heO4XJOiVKlSunbtmqKjo1W2bNlM29PXoihVqpRdjnfvvffaZT8AALg7aioAAPZBTQUAAAWJh9EB2FuNGjUkSUePHs1y+7FjxzKMAwAAAAAAAAAAxnC5JkXLli0lSWvXrs207erVqwoPD5evr68efPBBB0cGAAAAAAAAAABu53JNijZt2qh8+fL6448/9NNPP1luT0xM1Lvvvqv4+Hh17dpVQUFBBkYJAAAAAAAAAABMZrPZbHQQ9rZ9+3b169dPiYmJqlOnjipUqKDdu3fr4sWLqlu3rmbNmqVChQoZHSYAAAAAAAAAAG7NJZsUknTkyBF988032rZtm+Lj41WhQgW1b99effv2VeHChY0ODwAAAAAAAAAAt+eyTQoAAAAAAAAAAODcXG5NCgAAAAAAAAAAUDDQpAAAAAAAAAAAAIagSQEAAAAAAAAAAAxBkwIAAAAAAAAAABiCJgUAAAAAAAAAADAETQoAAAAAAAAAAGAImhQAAAAAAAAAAMAQNCkAAAAAAAAAAIAhvIwOALY5efKkJk6cqJ07d+ry5csqU6aM2rdvrwEDBqhQoUJGh2cXP//8sxYtWqTDhw8rISFBJUqU0IMPPqgBAwaoSpUqmcbv2LFDM2bM0O7duxUTE6Pg4GC1atVKgwYNUlBQkAEZ2M6a3MPDw9W7d2+r9jdmzBh17tw5P0O2m9w873FxcZo6darWrFmjs2fPytvbW9WrV1eXLl307LPPymQyGZSFbXKTe0xMjL777jutWbNGUVFRKlq0qOrXr68XX3xRjRo1MigD26WlpWn+/PlatGiRjh8/LpPJpKpVq6pjx47q3r27vLwyl6tVq1Zp1qxZOnHihFJTU1WzZk317t1bbdu2NSAD29mS++0mTZqkL7/8UsuWLVOtWrUcFLXrcId6KlFTqanUVHepqdRT6qmR3KGmUk+pp9RT96inEjWVmgpHM5nNZrPRQSB39u3bpz59+ig+Pl7169dXmTJltGvXLkVHRys0NFRz585VkSJFjA7TZmazWW+99ZZWrlwpb29v1a1bV0FBQTp8+LCioqLk7++vSZMm6cEHH7Tc5/vvv9eYMWNkMpl03333qVixYtq3b58uXbqkypUra+HChSpatKiBWVknN7kfP35ckyZNynZfZ8+e1e7du+Xt7a2ffvpJdevWdWAmuZfb5z0mJkY9e/ZURESEihUrpvvuu0+JiYnasWOHUlJS1LZtW3311VcF4iQwt7lfuHBBzz//vE6fPq2AgADVq1dPkrR3714lJibqrbfeUr9+/YxMKdeGDRumn3/+WX5+fmrYsKG8vb21a9cuxcTEqHHjxpo+fbp8fHws48ePH6/p06crICBATZo0UXJysrZt26aUlBQNHDhQgwcPNjCb3Mlt7rdbu3at3nzzTd28eZMTQBu4ej2VqKnUVGqqu9VU6in11CiuXlOpp9RT6ql71VOJmkpNhcOZUaAkJyebW7VqZQ4NDTUvWbLEcntCQoL5lVdeMYeGhpo/+OAD4wK0g2XLlplDQ0PNDz30kDkiIsJy+82bN83/93//Zw4NDTU3a9bMHBcXZzabzebdu3eba9asaW7YsKH5r7/+soyPjY019+/f3xwaGmp+7733HJ6HLXKbe3ZiY2PN7dq1M4eGhpoXL16c32HbRW5zHzdunDk0NNT8/PPPm2/cuGEZf+zYMXPTpk3NoaGh5lWrVjk8D1vkNvc+ffqYQ0NDzZ07dzZHRUVZxp8+fdrcvn17c2hoqHnLli0Oz8NW6fm3atUqQz5XrlwxP/PMM+bQ0FDztGnTLLdv3rw5y/GHDh0yN2nSxBwaGmres2ePQ3OwVW5zv93MmTPNderUMYeGhppDQ0PNBw8edFTYLsEd6qnZTE2lplJT07lDTaWeUk+N4g41lXpKPaWe3uIO9dRspqZSU2EE1qQoYH755RdFRUWpefPm6tSpk+V2Pz8/ffLJJwoICNCiRYt048YNA6PMm0WLFkmShg4dqtDQUMvtnp6eGjJkiKpXr65Lly5py5YtkqRvv/1WaWlpGjFihJo0aWIZX6hQIb377rsqWbKkTpw44dgkbJTb3LMzatQonThxQh07diwwl9DmNveNGzdKkgYOHJjhW1lVq1bVs88+K0natm2bo8LPk9zkfvLkSW3dulXe3t764osvVK5cOcv4ihUr6qOPPpIkffrpp45NIg+WLl0qSXrzzTcz5FO8eHENGDBAkrRhwwbL7ZMnT85yfM2aNTVkyBBJ0owZM/I7bLvIbe6S9Pfff6t3794aM2aMihQp4jLTJziaO9RTiZoqUVOpqbe4Q02lnlJPjeIONZV6Sj2lnt7iDvVUoqZK1FQ4Hk2KAiYsLEyS9Pjjj2faVrx4cTVp0kQpKSnatGmTo0Ozm8DAQFWtWjXLOQtNJpNCQkIkSRcvXtSNGze0efNmlSxZMssTncqVK2vz5s368ccf8z1ue8hN7tnZunWrli9fruDgYL377rv5Fqu95TZ3T09PSdL58+czjb9y5YokqVixYvkUrX3lJveIiAhJUvXq1VWpUqVM4++77z75+/vrwIEDunTpUv4GbidTp07VihUr1KZNm0zb0tLSJEne3t6SpNjYWO3YsUPe3t569NFHM41//PHHZTKZtGHDBst9nVluck83ePBghYeHq2XLllq6dGmBeZ07G3eopxI1lZpKTb2dq9dU6in11CjuUFOpp9TTO1FPXbeeStRUaiqMwMLZBcyRI0ckSTVq1Mhye/Xq1RUWFqaIiAg98cQTjgzNbiZOnJjtttTUVB04cECSVLZsWR06dEg3b97UvffeKw8PDx06dEi//fabLly4oODgYLVt27ZAzX+Xm9yzcvPmTcu3FIYNG6bAwED7B5lPcpt7ixYtdOjQIY0bN07+/v5q3ry5UlJStHTpUi1evFjFihWzfFvF2eUm94SEBElS4cKFsxxvMpnk4XGr/3z8+HGVLFnSztHan4+PT4Zv56Q7fvy4vv76a0my/IF3/PhxpaamqmLFill+OyMoKEglS5ZUdHS0Tp8+rXvuuSdfY8+r3OSermnTpnrqqacyzHmM3HOHeipRU7NDTaWmumJNpZ5ST43iDjWVepo16in11BXrqURNpabCCDQpCpgLFy5IkkqXLp3l9uDgYEk5f4uhIJs7d66ioqJUvHhxNW3aVCtWrJAklSpVSh9//LFmz54t821rwU+ePFn9+/fX0KFDjQrZbu7MPSs///yzjh07ptDQUD311FMOjjD/ZJX7wIEDdfr0aa1atSrTAlTNmjXTf//73wyXJhZUd+Z+6tQpSdLhw4cVGxub6UTw8OHDiouLkyRdvnzZ4fHaw9tvv63jx49r//798vf314gRI9ShQwdJd38PlG69D0ZHRys6OtrpTwDvlFPu6T755BODonMt7l5PJWoqNZWa6uo1lXpKPXUUd6+p1FPqKfXUteupRE2lpsIRmO6pgEnvUPv5+WW5Pf32+Ph4h8XkKFu3btX48eMl3ZoX0d/fXzExMZKkX3/9VfPmzdPrr7+usLAwbd26VR999JECAgI0depUzZ4928jQ8yyr3O9kNpstcxy+9tprMplMDo0xv2SXu6+vr5588kndc889Kl68uB555BHdf//98vPz0/bt2zV37twCcSllTrLKvWbNmqpbt65u3Lih//znPxnm9r1w4UKGy6eTk5MdHnNexcbGatmyZfr7779lNptlMpl0+vRpy0lt+ntbVv8H0vn6+mYYW1DcLXfYlzvXU4maSk2lprp6TaWeUk8dyZ1rKvWUeko9de16KlFTqalwFJoUBUz6HId3c/s3NVxBWFiYXnnlFSUnJ6tHjx6WSySTkpIkSTdu3NCQIUP02muvqVy5cgoKCtKzzz5ruaz0m2++0c2bNw2LPy+yy/1OGzZs0LFjx1S1alW1bdvWwVHmj5xy/+qrrzRw4EDVrl1b69ev17Rp0zRnzhytXLlSVatW1cyZM/XZZ58ZGH3e5JT7p59+qpIlS+r3339XmzZt9NJLL+mFF15Qu3btlJCQoObNm0vKPE9kQeDj46NNmzZp165d+uGHH1SpUiXNmTNHAwYMkNlstvo9UFKB+wPgbrnDvty1nkrUVGoqNdUdair1lHrqSO5aU6mn1FPqqevXU4maSk2Fo9CkKGDS57dLP/G5U2JioiQpICDAYTHlt9mzZ+u1115TYmKievXqpffff9+yLT1PDw8P9erVK9N9n3jiCRUvXlzXrl3T/2vvzsOiqhc/jr8HWdwwd0sEF7zgmhstamilZXZzq5tl/nIh9ZppWnkrwbr355aV5s09cUXNHZO8lV7XXH6ChrsiqKDggorghggIvz945gQyKMM2oJ/X8/g8cs6ZM9/vzJn5fOc53+X48eNFVuaCcr+632v9+vVAxtyAD0MPlfvV/fTp08yePZvHH3+cCRMmZJn30dXVlSlTpmBnZ8fixYtJSEiwQenz50Hve7169QgMDOStt97CycmJ4OBgzp07R58+fVi1apUx36ezs7Mtip8vjo6OVKtWjXLlyvHss8+yYMECqlWrxr59+9i+fbvxXpu/6ywxfz+WtO/BB9VdCtajmKegTFWmKlMflUxVnipPi9KjmKnKU+Wp8vTRyFNQpipTpahoTYoSpnr16iQkJHD58mWLC1OZ5/msXr16URetwKWmpjJmzBhWrFiByWTik08+YdCgQVmOqVy5MpAxv595+Ny9atWqRXx8PFevXi30MheU3NQ9s+TkZLZu3YqdnV2Jn+czN3UPCQkhLS0NLy8vi0Mq69Wrh5ubG1FRUURERPDUU08VVfHzxZr3vUaNGowZM8bivlOnTgEZ135JV6lSJdq3b8/q1as5cuQIL7zwAgCXL1/O8TEPy/fgvXV//vnnbV2kh8qjlKegTFWmKlMf9UxVnipPC9OjlKnKU+Wp8vTRzlNQpipTpbDoJkUJ4+npSXh4OBERETz55JPZ9p88edI4riRLSkrigw8+YOfOnZQuXZqvv/6aV155Jdtx5nrGx8eTnJyMo6NjtmOuXLkCQJUqVQq30AUkt3XP7I8//uDGjRt4eXndd7Gm4i63dTfPcXm/oaL29hlfbykpKYVT2AKW27qnpaVx6NAhbty4gbe3d7b9Z86c4fz581SoUKFELMiVnJzMpEmTuHjxIt9++63FH3Lmz3Vqair169fH3t6e6Oho7ty5k+34q1evEhcXR5kyZXBzcyuSOuSVtXWXgvWo5CkoU5WpytRHIVOVp8pTW3pUMlV5qjxVnj78eQrKVGWq2IqmeyphzHcpN27cmG1ffHw8wcHBODk50bp16yIuWcG5e/euEYSVK1dm8eLFOTaAPDw8cHFxITk5md9++y3b/rCwMC5evEjFihXx8PAo7KLnmzV1z+zgwYMAtGrVqrCLWGisqbu7uzsAO3futDisPCYmhqioKOzs7GjQoEGhlrsgWFN3Ozs7PvzwQwYMGMDFixez7V+6dCkAnTt3NobUFmeOjo789ttvbNiwga1bt2bbn5yczO7duwFo2rQpTk5OPPvss0bPrHtt2LCB9PR02rVrZ9XcoLZgbd2lYD0KeQrKVGWqMvVRyVTlqfLUlh6FTFWeKk+Vp49GnoIyVZkqtlL8vx0ki44dO+Li4sK2bdtYvny5sT0pKQk/Pz8SExPp2bOnMcS0JJo1axY7d+6kbNmyBAQEWOyNY2YymRgwYAAAEydO5OjRo8a+y5cv4+fnR3p6Or1797bYg6W4sabumR0+fBgo2SFhTd29vb1xc3Pj8uXL+Pr6Zpn7MTY2lpEjR5KamkqXLl1KxGfB2vf95ZdfBjKu+cy9cH755ReWLFmCk5MTQ4YMKdQyF6R33nkHgAkTJnDmzBlje2JiIqNHjyYqKgoPDw/jB3CfPn2AjPpnPj4sLIzvv/8e4L5Dz4sTa+suBedRyFNQpipTlamPUqYqT5WntvIoZKryVHmqPH108hSUqaBMlaJnStdy7CXO3r17GTBgAElJSTRu3JhatWqxf/9+Ll26RJMmTQgICMiySFNJcu3aNZ5//nkSExOpU6fOfRs03bp1w9vbm/T0dPz8/FizZg12dnZ4eXnh5OTEgQMHuHHjBq1bt2bOnDnFvgGYl7pn/jssLIwVK1bQvHnzIihtwcpL3cPCwvDx8SEuLo6KFSvSsmVLEhMTOXToEImJiTRr1oz58+dTvnz5IqyJ9fJS95s3b/LGG28QFRVFrVq1aNSoEefOnePo0aM4Ojoybdq0EtVgSElJYdiwYWzduhUHBwdatWqFk5MThw8f5urVq7i6urJgwQJcXV2Nx/zv//4vP/74o9Fr5e7duwQHB5OSkvLA+XGLk7zU/V4vvvgi586d46effqJhw4ZFWPqS72HOU1CmKlOVqY9apipPlae29DBnqvJUeao8fbTyFJSpylSxBa1JUQI99dRTrFq1iunTpxMSEsLJkyepVasWPXv2pH///iW28QcZi00lJiYCEBUVRVRUVI7HNmnSBG9vb0wmExMmTKBdu3b8+OOPHDt2jNTUVGrXrs3rr79O7969jbkfi7O81N3MvOCas7NzoZaxsOSl7g0aNCAoKIh58+axZcsWdu7cSalSpahXrx5dunQpMT2T8lL38uXL8+OPPzJ16lS2bNnC1q1bqVGjBj169GDgwIHGUOOSwsHBgZkzZ7Jy5UrWrFnDwYMHSUtLw83NjV69etG/f/9s1/aXX35JkyZNWLZsGSEhITg5OdG8eXP69+9Phw4dbFQT6+Wl7lJwHuY8BWWqMlWZ+qhlqvJUeWpLD3OmKk+Vp8rTqByPfRjzFJSpylSxBY2kEBERERERERERERERm9CaFCIiIiIiIiIiIiIiYhO6SSEiIiIiIiIiIiIiIjahmxQiIiIiIiIiIiIiImITukkhIiIiIiIiIiIiIiI2oZsUIiIiIiIiIiIiIiJiE7pJISIiIiIiIiIiIiIiNqGbFCIiIiIiIiIiIiIiYhO6SSEiIiIiIiIiIiIiIjahmxQiIiIiIiIiIiIiImITukkh2YSFhTFu3Dj++te/4uXlRdOmTWnfvj0DBgxgyZIlJCUl2bqIALz44ot4enqyatWqXB0fGBiIp6cn7dq1K+SSWe/zzz/H09PT6n/Tpk0jODjY+Ds1NdXWVcmX2NhYnnnmGXx9fY1t06ZNw9PTk169etmwZLbRt29fOnXqRGJiotWPNb9umf8FBgZmOeb8+fP4+fnRrl07mjRpgre3N59++imnTp0qqCoYzJ8/T0/PAjnfg677ixcvcvPmzSzbzJ+zkSNH5vv5Y2JijOc/c+ZMlvNn/rd79+58P5eUbMrUoqdMzaBMzUqZmjNlqpQEytOipzzNoDzNSnmaM+WpSP7Y27oAUrxMnTqVWbNmkZaWRvny5XFzc8PBwYHLly+zY8cOduzYwdy5c5kxYwaNGze2dXEfGnXq1KFly5bZtoeHh3Pz5k2qVKlC7dq1s+1/4okniqJ4RcbX15fk5GQ+/vhjWxelWPDz86N79+5MnDiRMWPG5Okc5cuXx8PDA4AqVaoY20+fPk2vXr1ISEjA2dkZT09PYmJiWLduHb/99hszZszA29u7QOpRlJKTk5k1axbz588nKCiI8uXLF9lzZ/4ch4aGFtnzSvGlTLUNZWoGZWpWylTrKVOluFCe2obyNIPyNCvlqfWUpyK5o5sUYlizZg0zZsygbNmyfPXVV7z00kuUKlXK2H/q1Cl8fX05cOAA7733Hr/88guVK1e2YYmt89JLL9GsWTMcHBxsXZRsBg8ezODBg7Ntf/fddwkJCaFdu3ZMnDjR4mNv377NL7/8AoC9fcn9SK9fv56dO3fy4YcfUrVqVVsXp1jw8PDg9ddfZ+XKlXTv3t3ij4TcnGPZsmVZtqWmpjJ48GASEhLo1q0bY8aMoXTp0iQnJ/P111+zZMkSPv74YzZu3EilSpUKqjoF6sknn7R43V+6dImZM2dafMzHH3/MwIEDcXZ2LpQyZf4cF1RvHCm5lKm2o0xVplqiTM2ZMlWKM+Wp7ShPlaeWKE9zpjwVyR9N9ySG2bNnA/Dpp5/yyiuvZGn8Abi7uzNr1iyqVKlCfHw8AQEBtihmnjk7O+Pu7o6bm5uti1KgypQpg7u7O+7u7rYuSp4lJyczefJknJ2d6du3r62LU6wMHjwYk8nEV199VWDnDAoK4syZM9SsWZNx48ZRunRpABwdHRk9ejReXl5cv36dhQsXFthzFrS8XPfVq1fH3d2d6tWrF2LJRDIoU0smZerDTZlqmTJVijPlacmkPH24KU8tU56K5I9uUggA165d4+zZswA0a9Ysx+MqV65Mx44dATh06FCRlE0efqtWreL8+fO89tprRTr0sSSoVasW3t7eHDp0iO3btxfIOdeuXQtA165dcXR0zLLPZDLx1ltvAfCf//ynQJ5P5FGjTBVbUqbmTJkqUrIoT8WWlKc5U56KSGEouePupEBlHoq2detWGjVqlOOxw4YNo0+fPlnmDszs8OHDBAQEsHfvXq5cuULZsmXx9PSkW7du9OjRI1vvF4CkpCTWrFnDpk2bOHHiBNevX8fR0ZGaNWvy3HPP0b9/f2rUqJGruly9epU+ffoQERGBh4cHCxcupEqVKgQGBjJq1Chq1KjB77//bhxvHq7q7+9P9erVmTVrFnv37uX69evUqFGDDh06MHjwYIvDhm/fvs3y5ctZt24dZ86cwcHBgZYtWzJkyBBOnjzJqFGj6NGjR47DYAtCcHAwffr0AeDo0aPGe/n555+zdu1axo0bh5eXF9OnT2fPnj3cuHGDWrVq8eabb9KvXz9MJhMbN25k0aJFHD9+nLS0NBo0aMD7779P+/btLT7n3r17Wbx4MaGhoSQkJFChQgWaN2/Ou+++S+vWra2uw5IlSwDo1q3bfY+7evUqc+bMYfPmzVy4cIHHHnuMVq1aMXDgQJo2bWrxMZGRkSxcuJDdu3dz4cIFnJyccHd359VXX+Xtt982emiYmV+3Ll26MGnSpGznM19HLi4ubNmyxdhuvo7mzJnDkSNHWLp0Kbdu3cLV1ZXvv/8ed3d3YmNj8ff3Z8eOHZw7dw4HBweeeOIJ2rRpQ79+/ahVq5bFOnTv3p3t27ezePHiHN+T3EpLSzN+vLVq1criMeYhu9HR0Vy4cMGYV9aa4aH3vj45iYmJoUOHDlStWpWdO3eyevVqVq5cycmTJ4GMocA9e/bk9ddfx2QyGY+zdN2b3wOzl19+GYCAgACeeeaZ+763ly5dYunSpezatYuzZ89y69YtypUrR7169Xj55Zd55513sl0rIjlRpipTlalked2UqcpUZarkhfJUeao8JcvrpjxVnipP5WGmmxQCQLly5WjZsiWhoaFMmzaN6Oho3njjDVq2bJmtwVatWjWqVatm8Tz+/v589913xqJmnp6exMfHExISQkhICOvWrWPmzJlZ5tu7evUqffv2JTw8HJPJhJubG0888QSxsbFEREQQERFBUFAQgYGBPP744/etR3x8PP369SMiIoJGjRoxf/78XM9X+Pvvv7N8+XLS09OpU6cO5cqV4+zZsyxatIht27YRGBiYpQdFfHw8gwYN4tChQ5hMJtzd3bGzs2Pbtm3s2LGDdu3a5ep5C1toaCjjx48nNTUVd3d3TCYTp06dYuLEiVy9ehWTycQPP/xAhQoVqFOnDpGRkezfv5+///3vzJkzJ1s9Jk2ahL+/PwCPPfYYHh4eXLp0ic2bN7N582YGDhzIyJEjc12+sLAwTp8+TaVKle7bQ+rSpUv06NGDixcv4ubmRt26dYmMjGTDhg1s2bIFf3//bI3PoKAg/Pz8SE5OpnTp0nh4eHDr1i0OHjzIwYMHWbNmDf7+/g+8rqwxe/ZsQkNDcXNzw9nZmZs3b1KnTh3Onj3L22+/TVxcHGXLlqVu3boAREVFsXjxYtauXcvixYst/vhq06YNdnZ27Nq1i4SEBCpWrJjn8sXGxpKUlASQ47DyJ554glKlSnH37l2ioqKMBqA1843m9B2Rk/T0dD777DPWrVtHhQoVqFu3LtHR0Rw4cIADBw4QGRn5wOvKw8ODxMREjhw5AkDjxo1xcnJ64PyeBw4cYODAgVy/fh0nJyfc3Nywt7cnJiaG/fv3s3//fjZv3kxAQIDFH7Ai91KmKlOVqQVDmZpBmSqPKuWp8lR5WjCUpxmUpyLFm25SiOGLL76gd+/eJCYmsnbtWtauXUv58uVp1aoVXl5ePPPMMzRt2hQ7O8uzhG3YsMG48ztkyBDef/99Y5jenj17+OSTTwgJCeHTTz9l1qxZxuO++eYbwsPDqV27NnPmzKFOnTrGvh07djBs2DDi4uJYtGgRn332WY7lv3btGj4+Ppw4cYKmTZsyf/58KlSokOv6L168mOeff56xY8ca8wFu3ryZYcOGcebMGVavXk2/fv2M48eNG8ehQ4dwdXVl+vTpNGjQAMhYvG348OG5ukNfFAIDA2nVqhXff/891apVIy0tDT8/PwIDA5k7d64RvP369cPOzo74+Hh8fHw4duwY/v7+WRqAy5cvx9/fnwoVKvDFF1/QtWtXICO8f/31V/z8/PD396d27dq8+eabuSrf7t27AWjevHmO1xZk9GZwcXFh1apVPPnkk0BGL4oBAwYQFRXFd999x6pVq4zjDx48yKhRo0hNTaVnz5589tlnRgP++PHjjBgxgvDwcIYMGcLKlSsLbEG30NBQRo4cycCBA4GMHzilSpViypQpxMXF0alTJ7766ivKlSsHwJUrVxg6dCj79+9n8uTJzJs3L9s5K1asSP369QkPD2fPnj288soreS5fXFyc8f+cFhUsVaoUzs7OJCQkEB8fb2y/d3GzghQXF8f69evx8/Ojd+/elCpVijt37jB69GiCgoJYsGABPj4+910I8YsvvjB6vQBMmTKF2rVr3/d57969yz/+8Q+uX79Ox44dmTBhAo899hgAKSkpLFiwgMmTJ7Nv3z527NjB888/X2B1loebMlWZqkzNP2Vq3sulTJWHhfJUeao8zT/lad7LpTwVKTpak0IMjRo1YtWqVVmG1928eZPt27czefJkevbsyXPPPceUKVO4fft2tsdPmTIFgLfeeovhw4dnmUfw2WefZfr06QBs2bKFffv2ARlfsHv37sVkMjFq1KgsjT8Ab29vXn31VQDCw8NzLPuNGzfo378/x44do0WLFixcuNCqxh9AlSpVmDp1apYFizp06GA0gEJDQ43tp06dYv369ZhMJmbMmGE0/iBj8bYffvih2Ay7s7e357vvvjN6DdjZ2TFo0CAgY1hlt27d8PHxMRpflSpVMoYoHjt2zDhPcnIy06ZNA2DChAlG4w8y5oh89dVX+cc//gHAtGnTSE1NzVX5goODgYweBg8yadIko/EH4OrqytChQ4GMIdx37twx9k2dOpXU1FSee+45xo4dm6WHUcOGDZk7dy6lS5fm6NGjBTqvpYuLCwMGDDD+NjdYwsLCgIw5Ns2NP4CqVavi5+eHt7c39evXz/G85tdnz549+SqfuYcKgJOTU47HmfdZ+qwXlnfeeYc+ffoYPUGcnJzw9fXFZDKRmppaKHMMh4WFkZCQgKOjI+PGjTMafwAODg4MGjQIV1dX4P7fQSL3UqYqU0GZml/K1LxTpsrDQnmqPAXlaX4pT/NOeSpSdHSTQrKoX78+P/74Iz/99BNDhw6lRYsWODg4GPvj4uKYPXs2Xbt25eLFi8b2qKgoIiMjAejbt6/Fc7do0YIWLVoAGb0/IOMLdvPmzRw8eNDi3d/09HTKli0LZA2uzG7evImPjw9Hjx6lWbNmzJs3L08LW7Vu3dpiILq7uwMZjUyz//73v0DGfImW5kB0cXExFm+zNU9Pz2xDRV1cXIz/W5o/0twIvnnzprFt//79XLlyhXLlyhm9AO7VtWtX7OzsiI2NzdJ4vJ+YmBgg52GdZtWqVbM4lNP8+qenp5OQkABAYmKi0bA0N2bv5erqarxH5uuxILRo0SLLvJRm5t4SkyZNYtOmTVmu56ZNmzJ37lxGjRqV43nNQ2+jo6PzVb779QSyxFJdCssLL7yQbVulSpWMRvT169cL/DkbN27M3r172bt3r8Vh98nJyUajsCgbw/JwUKYqU0GZmh/K1LxTpsrDRHmqPAXlaX4oT/NOeSpSdDTdk1jUsGFDGjZsyLBhw7h9+zahoaHs3LmTdevWERcXx9mzZxk+fDgrVqwA4PTp0wCUKVPGaDBZ0qRJE/bv3280Fs2cnJy4cuUKBw8eJCoqipiYGE6fPs3x48e5du0akNGjwpJ///vfRpjGxcXlObByWvTM3Nskc6+LiIgIgCy9U+7VpEkT1q9fn6eyFCTzXI2ZZe5BZCn0LA0rNdc5JSWF3r175/h8pUqVIi0tjdOnT2fpUZIT89DOB/Uqytx7KDPzDwT480dCdHQ0KSkpQMb7kBPze3Tv9ZgfOc1zOXz4cIKDg4mMjOSDDz7A0dGRFi1a0LZtW9q3b3/fawkw5qy8evVqvsqX+fW6c+dOjj1VzD1+Mve26tWrV66fp1q1akydOtWqsj3oM3j37l2rzmeN0qVLc/r0aY4dO8bZs2eJjo7m5MmTnDhxwngtcvoOEnkQZeqflKkZlKm5o0zNoEwVyaA8/ZPyNIPyNHeUpxmUpyLFm25SyAOVKVOGtm3b0rZtW4YPH46vry//+c9/OHDgAEePHqVx48ZGb4YH9Q4xDyG8deuWse3y5cv861//YsuWLVm+YMuUKUPTpk25e/cuf/zxR47nTEpK4umnnyYyMpKYmBi+/fZb/vnPf1pdz8y9cR7EPAdi5jC9V156yhSGMmXK3Hd/bnstmHvpJCcnZxlWnJPc9igwH/egocf3G/Z5r8y9a+63IJX5Pcp8PeZXTuVs2LAhQUFB/PDDD/z3v/8lISGB4OBggoOD+e677/Dw8OCf//wnXl5eFh9vvtbMP4jyKnODPyEhwWLDOzU11Xi/q1SpYmzPzftulrknVG496DOYnp5u9Tlz4+DBg/zrX//K1rOqUqVKtG/fnmPHjhm9qUTyS5manTJVmZoTZWoGZapIdsrT7JSnytOcKE8zKE9FijfdpBAAvvzyS/bs2UOPHj14//33czyudOnSjBkzho0bN5KSkkJkZCSNGzc2GnaZg9cSc9ibj79z5w59+/bl1KlTVKxYkV69etGkSRPc3d1xc3MzFnO6XwOwbdu2zJw5k23btjF8+HCWLVtGp06dePbZZ619GXLN3Ki6X30LslFRHJjr3LhxYwIDAwvsvE5OTiQmJmYZqpxfmefTvHHjRpZGTGbmxlTm481yamzkZzilq6sr48aNY8yYMRw5coSQkBD+7//+j+DgYMLDwxkwYAC//vqrxZ5F5rLmdx7ZGjVq4OzszI0bNzh37pzFIcwXLlwweoRknoP3xIkT+Xru4ujUqVP06dOHpKQk6tevzxtvvEGDBg1wd3c3es28/fbbagCKVZSp1lGmKlPzQpla/ChTpaApT62jPFWe5oXytPhRnsqjSmtSCJDREDtz5gybNm164LHly5c3AtM8D1+9evWAjHA8depUjo89cuQI8Ofch5s2beLUqVPY29uzYsUKRowYQceOHalbt66xMFHmeUUt6dy5M6VLl+aVV16hY8eOpKen4+fnR2Ji4gPrklfmBaLuF4jmRageFub5JqOionJccCw9PZ09e/YQFRVFcnJyrs5btWpV4M+ePwXBzc3NGA5svuYsufd6BIzrzjwU916XLl2yujzp6enExMSwe/duIKNn0JNPPsmAAQOYN28eP//8M+XLl+f27dts3LjR4jnMr09OjVlrmIc479+/3+J+83YXF5cch7c+LBYtWkRSUhL16tVj9erV+Pj40KZNmyz1jo2NtWEJpSRSplpHmapMtYYytfhSpkpBU55aR3mqPLWG8rT4Up7Ko0o3KQTIWEwKMgLxQT0Qdu7cSUJCAhUrVqRZs2ZARuPA3EBYtGiRxceFhoZy6NAhANq1awf8uSBVuXLlstwNN7ty5Qrbtm0DcjfX35dffomzs7MxpLawvPTSS0BGUFpq8MbFxRkLlz0snnrqKZydnbl161aO18jPP/9M37596dy58wMb7mbm6ya3x+dG2bJljV5KAQEBFo+Jjo5my5YtwJ/XI/w51NQ8h21md+/eNR5jjYSEBDp16kT//v05fPhwtv1169alZs2aQM5zSppfH/OPrfzo3LkzAIGBgRYb6suXLwegR48e+X6uopZ5aHhuht6eO3cOyFh80NKw8127dnH+/HmgcOcblYeLMtU6ylRlqjWUqUVHmSq2pjy1jvJUeWoN5WnRUZ6K5I5uUgiQMRy1U6dOAIwePZrx48dnGzp2584d1qxZw4gRIwAYMWJEliGIw4cPB2DFihVMnTo1S7AEBwfz4YcfAuDt7U2bNm2AP8Ps2rVrLFq0KMsX9oEDB+jfvz8JCQlA7oYw1qhRg08//RSAZcuWsWfPnly/BtZo1KgRHTt2JC0tjaFDh3Ly5Elj3/nz5xkyZMgDhxWXNGXLlmXQoEEAjB8/njVr1mRprGzatMmYZ7Vz584Wh2ha0rJlSyDnHhN5NXToUOzt7dm5cydffPFFlvcjLCyMgQMHcufOHRo0aED37t2Nfa1atQIyFmELCAgwrslr167h6+tLeHi41WWpVKkS3t7eAPj6+mb50ZCWlsbSpUsJDw/Hzs7OOO5e5tfHXL786Nq1K25ubkRHRzNy5EjjtUlOTmbcuHH88ccfODs78z//8z/5fq6ilnkOXnPD7X7MP0B27drFvn37jO2pqamsX7+ejz76yNhmXvRO5EGUqdZRpipTraFMLTrKVLE15al1lKfKU2soT4uO8lQkd7QmhRgmTZpE2bJl+emnnwgICCAgIICaNWtSpUoV7ty5YwyPdHBw4JNPPqFXr15ZHt+5c2fOnj3LlClTmDFjBosWLaJu3bpcvXrVuBP89NNP8+2332IymQB48cUXadGiBfv372fChAn4+/tTo0YNLl++TGxsLCaTiTZt2rB7924uXbpEenq68dicvPnmm/z888+EhITg6+vLzz//bHE+x/waO3YsZ86cISIigtdee4369etTqlQpIiIisLe3x9PTkxMnThhDMx8GAwcOJDo6mpUrV+Lr68u3335LrVq1iI2NNYaYtmrVivHjx+f6nO3atWPKlCkcPnyY5ORkHB0dC6SsLVq0YPz48YwePZqVK1cSFBSEu7s7iYmJREZGAhlDoqdPn57lOdu3b4+Xlxf79u1j/PjxzJ8/n0qVKnH69GlSUlIYNmwY06ZNs7o8Y8aM4a233iI8PJzXXnuNWrVq4ezszPnz541hsh999BH169fP9tiLFy9y7tw57O3tadu2bR5fkT85OTkxefJkfHx82LBhAzt27KBevXrExMSQkJCAg4MD06dPz7KAWUlRsWJFXFxcOHfuHB988AH16tVj+PDhWXoiZebj48P69euJj4+nd+/e1KlTh3LlyhETE8O1a9coW7as8R1VkD2p5OGnTLWOMlWZag1latFQpkpxoDy1jvJUeWoN5WnRUJ6K5I5GUojB0dGRiRMnsmrVKnx8fGjcuDHJycmEhYVx8eJF6taty3vvvUdQUJDRW+Fef//731m5ciWvvfYa5cuXJywsjKSkJFq3bs3XX3/NokWLsoRKqVKlWLRoESNHjqRhw4bcvn2b8PBw7O3tefXVV1m6dCkzZ87EycmJhIQEQkNDH1gPk8nEuHHjKF26NOfOnSu0IbWVK1dm5cqVRsicPXuW8+fP88ILL7By5UqaN28OYHF4XkllMpkYO3Ys8+bN46WXXsLe3p7jx49z69YtmjdvzujRo1m4cKFVdW7UqBF/+ctfuHPnDsHBwQVa3u7du7Nu3Tp69uxJ1apViYiIID4+npYtW/Lll1+yevVqXF1dszzGzs6OefPmMWLECP7yl78QFxfH+fPnad26NcuWLaNLly55Kkv16tVZvXo17733HvXr1+fy5cuEh4fj5OTEX//6V5YtW5bj5+r3338H4LnnniuQ+T4hY87PdevW8be//Y0KFSpw4sQJTCYTnTp1YtWqVYW6qF9h+/7772nRogVpaWlERUVx9uzZHI+tWbMmQUFB9OrVizp16nDhwgUiIyOpWrUq7777LkFBQUbPvODg4EKdR1geLspU6yhTlanWUKYWHWWq2Jry1DrKU+WpNZSnRUd5KvJgpvTcTIgmIlb78MMP2bBhAx999BGDBw+2dXGKtbVr1/L555/TqVMnpk6dauviFDt/+9vfOHz4MEuWLOGpp57K1WOmTZvG9OnTadmyJcuWLSvkEsq9PD09AViwYIExdYCI5J0yNfeUqfenTC15lKkiBUd5mnvK0/tTnpY8ylMp7jSSQiQPdu3aRYcOHYw5Tu91+/ZtQkJCgIxeGHJ/Xbp0wc3NjS1bthAXF2fr4hQrYWFhHD58mKeffjrXjT8RkZJEmVqwlKk5U6aKyMNMeVqwlKc5U56KSGHQTQqRPGjYsCGxsbH89ttvzJs3j9TUVGNfXFwcI0eOJD4+nnr16tG6dWsblrRksLe3Z+jQoaSkpBAQEGDr4hQrc+fOxWQy5fhjQ0SkpFOmFixlas6UqSLyMFOeFizlac6UpyJSGLRwtkgeVK5cmZEjR/LVV1/xzTffMGfOHFxcXLh9+zbR0dGkpKTw+OOP8+9//xsHBwdbF7dE6NatG7/++isLFy6kV69ePP7447Yuks0dPnyY9evX07t3b7y8vPJ0jvDwcGMBwcGDB9O+ffuCLKJkMnv2bLZv327rYoiUOMrUgqdMzU6ZWrIoU0WspzwteMrT7JSnJYvyVEoSjaQQyaN+/fqxevVqunTpQsWKFTl9+jRXrlyhfv36DBs2jJ9++smY809yZ+zYsZQpU4YpU6bYuijFwjfffEPt2rUZOXJkns9x8+ZNQkNDCQ0N1TDlQhYVFWW81iJiHWVqwVOmZqVMLVmUqSJ5ozwteMrTrJSnJYvyVEoSLZwtIiIiIiIiIiIiIiI2oZEUIiIiIiIiIiIiIiJiE7pJISIiIiIiIiIiIiIiNqGbFCIiIiIiIiIiIiIiYhO6SSEiIiIiIiIiIiIiIjahmxQiIiIiIiIiIiIiImITukkhIiIiIiIiIiIiIiI2oZsUIiIiIiIiIiIiIiJiE7pJISIiIiIiIiIiIiIiNqGbFCIiIiIiIiIiIiIiYhP/Dw7g1MpuqbYRAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1603.21x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import seaborn as sns\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"\n",
|
||
"def analyze_raw_moisture_temperature(excel_file=\"all_data_with_delta.xlsx\"):\n",
|
||
" \"\"\"\n",
|
||
" Reads tidy data (with columns Trial, SoakingTime, Bag, Sample, MC%, Temp, etc.),\n",
|
||
" and generates bar charts (catplots) for each Trial, comparing:\n",
|
||
" - MC% by SoakingTime and Bag, separate bars for Sample1 vs Sample2\n",
|
||
" - Temp by SoakingTime and Bag, separate bars for Sample1 vs Sample2\n",
|
||
" \"\"\"\n",
|
||
" # ------------------------------------------------------\n",
|
||
" # 1) Load the tidy data\n",
|
||
" # ------------------------------------------------------\n",
|
||
" df = pd.read_excel(excel_file)\n",
|
||
"\n",
|
||
" # We'll assume columns:\n",
|
||
" # Trial, SoakingTime, Bag, Measurement, Sample, Temp, MC%, etc.\n",
|
||
" # If your columns differ, rename them accordingly.\n",
|
||
"\n",
|
||
" # Set a nice style\n",
|
||
" sns.set(style=\"whitegrid\", context=\"talk\")\n",
|
||
"\n",
|
||
" # Sort so the bar charts go in ascending SoakingTime order\n",
|
||
" df = df.sort_values([\"Trial\", \"Bag\", \"SoakingTime\", \"Sample\"])\n",
|
||
"\n",
|
||
" # Unique Trials\n",
|
||
" trials = df[\"Trial\"].unique()\n",
|
||
"\n",
|
||
" for trial in trials:\n",
|
||
" # Subset for just this trial\n",
|
||
" sub = df[df[\"Trial\"] == trial]\n",
|
||
"\n",
|
||
" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
|
||
" # A) MC% bar chart, comparing SoakingTime (x-axis) and Sample (hue)\n",
|
||
" # across columns for each Bag\n",
|
||
" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
|
||
" g1 = sns.catplot(data=sub, x=\"SoakingTime\", y=\"MC%\", hue=\"Sample\", col=\"Bag\", kind=\"bar\", palette=\"Set2\", height=5, aspect=1) # x-axis: SoakingTime # y-axis: moisture content # separate bars for Sample 1 vs. 2 # separate subplot column for each Bag # choose a pleasing color palette # adjust size\n",
|
||
" g1.fig.suptitle(f\"Trial {trial} - Moisture Content (MC%)\", y=1.02)\n",
|
||
" g1.set_axis_labels(\"Soaking Time (hours) [0=Initial]\", \"MC%\")\n",
|
||
" g1._legend.set_title(\"Sample\") # rename legend title\n",
|
||
"\n",
|
||
" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
|
||
" # B) Temp bar chart, comparing SoakingTime (x-axis) and Sample (hue)\n",
|
||
" # across columns for each Bag\n",
|
||
" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
|
||
" g2 = sns.catplot(data=sub, x=\"SoakingTime\", y=\"Temp\", hue=\"Sample\", col=\"Bag\", kind=\"bar\", palette=\"Set1\", height=5, aspect=1) # a different color palette if you like\n",
|
||
" g2.fig.suptitle(f\"Trial {trial} - Temperature (°F)\", y=1.02)\n",
|
||
" g2.set_axis_labels(\"Soaking Time (hours) [0=Initial]\", \"Temperature (°F)\")\n",
|
||
" g2._legend.set_title(\"Sample\")\n",
|
||
"\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"\n",
|
||
"# --------------------------------------------------------------------\n",
|
||
"# Example usage:\n",
|
||
"# --------------------------------------------------------------------\n",
|
||
"if __name__ == \"__main__\":\n",
|
||
" analyze_raw_moisture_temperature(\"all_data_with_delta.xlsx\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "pecan",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.4"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|