Compare commits
4 Commits
061d049bdf
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
990de6345d | ||
|
|
e3b8320ad2 | ||
|
|
ce6b1c6705 | ||
|
|
8a4f684cc1 |
@@ -1,12 +1,35 @@
|
||||
import cv2
|
||||
from ultralytics import YOLO
|
||||
from collections import deque
|
||||
import paho.mqtt.client as mqtt
|
||||
from influxdb import InfluxDBClient
|
||||
from influxdb_client import InfluxDBClient, Point, WriteOptions
|
||||
import time
|
||||
from datetime import datetime
|
||||
|
||||
# InfluxDB Configuration
|
||||
INFLUX_URL = "http://localhost:8086"
|
||||
INFLUX_TOKEN = "--k98NX5UQ2qBCGAO80lLc_-teD-AUtKNj4uQfz0M8WyjHt04AT9d0dr6w8pup93ukw6YcJxWURmo2v6CAP_2g=="
|
||||
INFLUX_ORG = "GAAIM"
|
||||
INFLUX_BUCKET = "AGVIGNETTE"
|
||||
|
||||
# Connect to InfluxDB
|
||||
client = InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG)
|
||||
write_api = client.write_api(write_options=WriteOptions(batch_size=1))
|
||||
|
||||
# MQTT Setup
|
||||
MQTT_BROKER = "172.20.29.125"
|
||||
MQTT_TOPIC = "fruit/classification"
|
||||
|
||||
mqtt_client = mqtt.Client()
|
||||
mqtt_client.connect(MQTT_BROKER, 1883, 6000)
|
||||
|
||||
# Camera index (default camera is 0)
|
||||
camera_index = 1
|
||||
camera_index = 0
|
||||
i = 0
|
||||
|
||||
# Load the YOLO model
|
||||
model = YOLO(r"D:\AIM\lemon\runs\detect\train4\weights\best.pt") # Load custom model
|
||||
model = YOLO(r"/Users/vel/Desktop/CvModel/CV_AG/runs/detect/train5/weights/best.pt") # Load custom model
|
||||
|
||||
# Initialize the camera
|
||||
cap = cv2.VideoCapture(camera_index)
|
||||
@@ -32,8 +55,9 @@ class_labels = {
|
||||
id_tracked_classes = ["DefectiveLemon", "GoodLemon", "NotRipeLemon"]
|
||||
|
||||
# Parameters
|
||||
HISTORY_LENGTH = 5 # Number of frames to consider for majority voting
|
||||
CONFIRMATION_FRAMES = 5 # Frames needed to confirm a new label
|
||||
HISTORY_LENGTH = 7 # Number of frames to consider for majority voting
|
||||
CONFIRMATION_FRAMES = 7 # Frames needed to confirm a new label
|
||||
lemon_time = 0
|
||||
|
||||
# Dictionary to track detection history and confirmed states
|
||||
lemon_history = {} # Format: {ID: deque(maxlen=HISTORY_LENGTH)}
|
||||
@@ -76,7 +100,7 @@ while cap.isOpened():
|
||||
break
|
||||
|
||||
# Perform object tracking using BoT-SORT
|
||||
results = model.track(source=frame, conf=0.5, tracker='botsort.yaml', show=False)
|
||||
results = model.track(source=frame, conf=0.5, tracker='botsort.yaml', show=False, device = 'mps')
|
||||
|
||||
for result in results:
|
||||
frame = result.orig_img # Current frame
|
||||
@@ -109,6 +133,43 @@ while cap.isOpened():
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, display_text, (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
||||
|
||||
# Create Decision Point at x = 600
|
||||
if x1 > 100:
|
||||
cv2.line(frame, (600, 0), (600, height), (255, 0, 0), 2)
|
||||
# Create Decision Point at x = 670
|
||||
if x1 > 100:
|
||||
cv2.line(frame, (760, 0), (760, height), (255, 0, 0), 2)
|
||||
cv2.putText(frame, "Decision Point", (630, height // 2),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
||||
|
||||
# Lock in the label once it crosses the decision point
|
||||
if x1 > 700 and obj_id in lemon_states:
|
||||
cv2.putText(frame, f"Locked: {lemon_states[obj_id]}", (x1, y1 - 40),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
||||
else:
|
||||
cv2.putText(frame, "Waiting to Lock", (x1, y1 - 40),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
|
||||
|
||||
if x1 > 600 and x1 < 780:
|
||||
if final_label == "DefectiveLemon":
|
||||
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
|
||||
if time.time() - lemon_time > .3:
|
||||
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
|
||||
lemon_time = time.time()
|
||||
i = i + 1
|
||||
elif final_label == "NotRipeLemon":
|
||||
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
|
||||
if time.time() - lemon_time > .3:
|
||||
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
|
||||
lemon_time = time.time()
|
||||
i = i + 1
|
||||
elif final_label == "GoodLemon":
|
||||
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
|
||||
if time.time() - lemon_time > .3:
|
||||
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
|
||||
lemon_time = time.time()
|
||||
i = i + 1
|
||||
|
||||
# Display the processed video stream
|
||||
cv2.imshow("Live Detection", frame)
|
||||
|
||||
@@ -1,7 +1,99 @@
|
||||
import cv2
|
||||
from ultralytics import YOLO
|
||||
from collections import deque
|
||||
import paho.mqtt.client as mqtt
|
||||
from influxdb import InfluxDBClient
|
||||
from influxdb_client import InfluxDBClient, Point, WriteOptions
|
||||
import time
|
||||
from datetime import datetime
|
||||
import ssl
|
||||
import os
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
from PIL import Image, ImageTk
|
||||
import threading
|
||||
|
||||
|
||||
# InfluxDB Configuration
|
||||
INFLUX_URL = "http://localhost:8086"
|
||||
INFLUX_TOKEN = "export INFLUX_TOKEN=duVTQHPpHqr6WmdYfpSStqm-pxnvZHs-W0-3lXDnk8Tn6PGt59MlnTSR6egjMWdYvmL_ZI6xt3YUzGVBZHvc7w=="
|
||||
INFLUX_ORG = "GAAIM"
|
||||
INFLUX_BUCKET = "AGVIGNETTE"
|
||||
|
||||
# Connect to InfluxDB
|
||||
client = InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG)
|
||||
write_api = client.write_api(write_options=WriteOptions(batch_size=1))
|
||||
|
||||
# MQTT Setup
|
||||
MQTT_BROKER = "192.168.8.172"
|
||||
MQTT_TOPIC = "fruit/classification"
|
||||
|
||||
def start_loading():
|
||||
for i in range(101): # 0 to 100%
|
||||
time.sleep(0.38) # 0.4s * 100 = 40 seconds
|
||||
progress_var.set(i)
|
||||
progress_bar.update_idletasks()
|
||||
root.destroy()
|
||||
|
||||
# Set up full-screen window
|
||||
root = tk.Tk()
|
||||
root.title("Starting Up")
|
||||
root.attributes('-fullscreen', True)
|
||||
|
||||
# Get screen size
|
||||
screen_width = root.winfo_screenwidth()
|
||||
screen_height = root.winfo_screenheight()
|
||||
|
||||
# Load and resize the background image
|
||||
try:
|
||||
bg_img = Image.open("comicrobodog.png") # Replace with your image
|
||||
bg_img = bg_img.resize((screen_width, screen_height), Image.ANTIALIAS)
|
||||
bg_photo = ImageTk.PhotoImage(bg_img)
|
||||
|
||||
# Set as background using a label
|
||||
bg_label = tk.Label(root, image=bg_photo)
|
||||
bg_label.place(x=0, y=0, relwidth=1, relheight=1)
|
||||
except Exception as e:
|
||||
print("Error loading background image:", e)
|
||||
root.configure(bg='black') # Fallback
|
||||
|
||||
# Overlay content frame (transparent background)
|
||||
overlay = tk.Frame(root, bg='', padx=20, pady=20)
|
||||
overlay.place(relx=0.5, rely=0.5, anchor='center')
|
||||
|
||||
# Message label
|
||||
label = tk.Label(
|
||||
overlay,
|
||||
text="Computer Vision Vignette is Starting Up",
|
||||
font=("Helvetica", 32, "bold"),
|
||||
fg="white"
|
||||
)
|
||||
label.pack(pady=10)
|
||||
|
||||
# Progress bar
|
||||
progress_var = tk.IntVar()
|
||||
progress_bar = ttk.Progressbar(
|
||||
overlay,
|
||||
maximum=100,
|
||||
variable=progress_var,
|
||||
length=800
|
||||
)
|
||||
progress_bar.pack(pady=20)
|
||||
|
||||
# Start the progress in a thread
|
||||
threading.Thread(target=start_loading, daemon=True).start()
|
||||
|
||||
# Close on ESC
|
||||
root.bind("<Escape>", lambda e: root.destroy())
|
||||
|
||||
root.mainloop()
|
||||
|
||||
|
||||
mqtt_client = mqtt.Client()
|
||||
|
||||
|
||||
# Set up TLS/SSL for MQTT connection
|
||||
mqtt_client.connect(MQTT_BROKER, 1883, 60000)
|
||||
|
||||
# Allow duplicate loading of OpenMP runtime
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
||||
@@ -10,10 +102,15 @@ os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
||||
yaml_path = "botsort.yaml"
|
||||
|
||||
# Camera index (default camera index, 1 indicates an external camera)
|
||||
camera_index = 1
|
||||
camera_index = 0
|
||||
|
||||
cap = cv2.VideoCapture(camera_index)
|
||||
cap.set(cv2.CAP_PROP_FPS, 30)
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
|
||||
# Load the YOLO model
|
||||
model = YOLO(r"D:\AIM\lemon\runs\detect\train4\weights\best.pt") # Load custom model
|
||||
model = YOLO(r"/Users/ag_cv_gaaim/Desktop/CV_AG/runs/detect/train4/weights/best.pt") # Load custom model
|
||||
|
||||
# Define class labels
|
||||
class_labels = {
|
||||
@@ -34,9 +131,11 @@ GOOD_THRESHOLD = 0.7 # Threshold for "GoodLemon" and "NotRipeLemon" proportio
|
||||
|
||||
# State history for each target (used for smoothing), format: {ID: deque([...], maxlen=HISTORY_LENGTH)}
|
||||
lemon_history = {}
|
||||
lemon_send_history = []
|
||||
|
||||
# Set the display window to be resizable
|
||||
cv2.namedWindow("Live Detection", cv2.WINDOW_NORMAL)
|
||||
cv2.setWindowProperty("Live Detection", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
|
||||
|
||||
# Smoothing function:
|
||||
# If the current detected label is not in smoothing_labels, clear the target's history and return the current label;
|
||||
@@ -71,20 +170,47 @@ def get_smoothed_label(obj_id, current_label):
|
||||
# Use streaming tracking mode to maintain tracker state
|
||||
results = model.track(
|
||||
source=camera_index, # Get video stream directly from the camera
|
||||
conf=0.5,
|
||||
conf=0.3,
|
||||
tracker=yaml_path, # Use the YAML configuration file
|
||||
persist=True, # Persist tracking (do not reset)
|
||||
stream=True, # Stream processing, not frame-by-frame calling
|
||||
show=False
|
||||
show=False,
|
||||
device = 'mps' #'cpu'
|
||||
)
|
||||
|
||||
# Create variables to store the tracking results
|
||||
num_defective = 0
|
||||
num_good = 0
|
||||
num_notripe = 0
|
||||
last_classification = None
|
||||
|
||||
# Iterate over streaming tracking results
|
||||
for result in results:
|
||||
|
||||
frame = result.orig_img # Current frame
|
||||
|
||||
frame = cv2.flip(frame, 1)
|
||||
|
||||
detections = result.boxes # Detection box information
|
||||
|
||||
# Create bounding box for classification area
|
||||
cv2.rectangle(frame, (0, 370), (1000, 700), (0, 0, 0), -1) # Black background for text
|
||||
cv2.rectangle(frame, (0, 0), (1000, 200), (0, 0, 0), -1) # Black background for text
|
||||
cv2.rectangle(frame, (600, 200), (660, 370), (255, 255, 255), 2)
|
||||
cv2.putText(frame, "Classification Area", (560, 190), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
# Display the number of lemons in the top left corner
|
||||
cv2.putText(frame, f"Defective: {num_defective}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
||||
cv2.putText(frame, f"Good: {num_good}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
||||
cv2.putText(frame, f"Not Ripe: {num_notripe}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 100, 80), 2)
|
||||
cv2.putText(frame, f"Last Classification: {last_classification}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
cv2.putText(frame, f"Total Lemons: {num_defective + num_good + num_notripe}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
||||
|
||||
for box in detections:
|
||||
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Detection box coordinates
|
||||
|
||||
# Adjust x-coordinates for the flipped frame
|
||||
x1, x2 = width - x2, width - x1
|
||||
|
||||
obj_id = int(box.id) if box.id is not None else -1 # Tracking ID
|
||||
class_id = int(box.cls) # Class ID
|
||||
score = box.conf # Confidence
|
||||
@@ -100,6 +226,41 @@ for result in results:
|
||||
if final_label in smoothing_labels:
|
||||
position = f"({x1}, {y1}, {x2}, {y2})"
|
||||
print(f"ID: {obj_id}, Position: {position}, Label: {display_text}")
|
||||
# Draw detection box and label with color based on classification
|
||||
if final_label == "DefectiveLemon":
|
||||
box_color = (100, 100, 255) # Red for defective
|
||||
elif final_label == "NotRipeLemon":
|
||||
box_color = (255, 100, 80) # Blue for unripe
|
||||
elif final_label == "GoodLemon":
|
||||
box_color = (0, 255, 0) # Green for good
|
||||
else:
|
||||
box_color = (255, 255, 255) # White for unknown or other classes
|
||||
|
||||
# Add background rectangle for text
|
||||
text_size = cv2.getTextSize(display_text, cv2.FONT_HERSHEY_TRIPLEX, 0.6, 2)[0]
|
||||
text_x, text_y = x1, y1 - 10
|
||||
text_w, text_h = text_size[0], text_size[1]
|
||||
cv2.rectangle(frame, (text_x, text_y - text_h - 5), (text_x + text_w, text_y + 5), (0, 0, 0), -1)
|
||||
|
||||
# Draw detection box and text
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), box_color, 2)
|
||||
cv2.putText(frame, display_text, (text_x, text_y),
|
||||
cv2.FONT_HERSHEY_TRIPLEX, 0.6, box_color, 2)
|
||||
cv2.rectangle(frame, (500, 0), (1000, 170), (0, 0, 0), -1) # Black background for text
|
||||
|
||||
if x1 > 600 and x1 < 660 and y2 < 410 and y1 > 190 and obj_id not in lemon_send_history:
|
||||
if final_label in ["DefectiveLemon", "NotRipeLemon", "GoodLemon"]:
|
||||
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
|
||||
lemon_send_history.append(obj_id)
|
||||
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
|
||||
# Update Tracking Variables
|
||||
if final_label == "DefectiveLemon":
|
||||
num_defective += 1
|
||||
elif final_label == "GoodLemon":
|
||||
num_good += 1
|
||||
elif final_label == "NotRipeLemon":
|
||||
num_notripe += 1
|
||||
last_classification = final_label
|
||||
else:
|
||||
# For other classes, display the current detection result directly and clear history (if exists)
|
||||
if obj_id in lemon_history:
|
||||
@@ -108,11 +269,6 @@ for result in results:
|
||||
else:
|
||||
display_text = label
|
||||
|
||||
# Draw detection box and label
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
cv2.putText(frame, display_text, (x1, y1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
||||
|
||||
# Display the processed frame
|
||||
cv2.imshow("Live Detection", frame)
|
||||
|
||||
@@ -123,3 +279,5 @@ for result in results:
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
print("Camera video processing complete. Program terminated.")
|
||||
|
||||
|
||||
|
||||
3
autostart.sh
Executable file
3
autostart.sh
Executable file
@@ -0,0 +1,3 @@
|
||||
#!/usr/bin/env bash
|
||||
source /Users/ag_cv_gaaim/Desktop/CV_AG/cvag/bin/activate
|
||||
python3 /Users/ag_cv_gaaim/Desktop/CV_AG/Test_Track_updated.py
|
||||
16
botsort.yaml
16
botsort.yaml
@@ -4,18 +4,18 @@
|
||||
# For documentation and examples see https://docs.ultralytics.com/modes/track/
|
||||
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
|
||||
|
||||
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
|
||||
track_high_thresh: 0.25 # threshold for the first association
|
||||
track_low_thresh: 0.1 # threshold for the second association
|
||||
new_track_thresh: 0.4 # threshold for init new track if the detection does not match any tracks
|
||||
track_buffer: 30 # buffer to calculate the time when to remove tracks
|
||||
match_thresh: 0.7 # threshold for matching tracks
|
||||
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
|
||||
track_high_thresh: 0.2 # threshold for the first association
|
||||
track_low_thresh: 0.05 # threshold for the second association
|
||||
new_track_thresh: 0.3 # threshold for init new track if the detection does not match any tracks
|
||||
track_buffer: 50 # buffer to calculate the time when to remove tracks
|
||||
match_thresh: 0.8 # threshold for matching tracks
|
||||
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
|
||||
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
|
||||
|
||||
# BoT-SORT settings
|
||||
gmc_method: sparseOptFlow # method of global motion compensation
|
||||
# ReID model related thresh (not supported yet)
|
||||
proximity_thresh: 0.5
|
||||
appearance_thresh: 0.25
|
||||
proximity_thresh: 0.6
|
||||
appearance_thresh: 0.2
|
||||
with_reid: False
|
||||
|
||||
BIN
comicrobodog.png
Normal file
BIN
comicrobodog.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.6 MiB |
65
loadingscreen2.py
Normal file
65
loadingscreen2.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
from PIL import Image, ImageTk
|
||||
import time
|
||||
import threading
|
||||
|
||||
def start_loading():
|
||||
for i in range(101): # 0 to 100%
|
||||
time.sleep(0.4) # 0.4s * 100 = 40 seconds
|
||||
progress_var.set(i)
|
||||
progress_bar.update_idletasks()
|
||||
root.destroy()
|
||||
|
||||
# Set up full-screen window
|
||||
root = tk.Tk()
|
||||
root.title("Starting Up")
|
||||
root.attributes('-fullscreen', True)
|
||||
|
||||
# Get screen size
|
||||
screen_width = root.winfo_screenwidth()
|
||||
screen_height = root.winfo_screenheight()
|
||||
|
||||
# Load and resize the background image
|
||||
try:
|
||||
bg_img = Image.open("comicrobodog.png") # Replace with your image
|
||||
bg_img = bg_img.resize((screen_width, screen_height), Image.ANTIALIAS)
|
||||
bg_photo = ImageTk.PhotoImage(bg_img)
|
||||
|
||||
# Set as background using a label
|
||||
bg_label = tk.Label(root, image=bg_photo)
|
||||
bg_label.place(x=0, y=0, relwidth=1, relheight=1)
|
||||
except Exception as e:
|
||||
print("Error loading background image:", e)
|
||||
root.configure(bg='black') # Fallback
|
||||
|
||||
# Overlay content frame (transparent background)
|
||||
overlay = tk.Frame(root, bg='', padx=20, pady=20)
|
||||
overlay.place(relx=0.5, rely=0.5, anchor='center')
|
||||
|
||||
# Message label
|
||||
label = tk.Label(
|
||||
overlay,
|
||||
text="Computer Vision Vignette is Starting Up",
|
||||
font=("Helvetica", 32, "bold"),
|
||||
fg="white"
|
||||
)
|
||||
label.pack(pady=10)
|
||||
|
||||
# Progress bar
|
||||
progress_var = tk.IntVar()
|
||||
progress_bar = ttk.Progressbar(
|
||||
overlay,
|
||||
maximum=100,
|
||||
variable=progress_var,
|
||||
length=800
|
||||
)
|
||||
progress_bar.pack(pady=20)
|
||||
|
||||
# Start the progress in a thread
|
||||
threading.Thread(target=start_loading, daemon=True).start()
|
||||
|
||||
# Close on ESC
|
||||
root.bind("<Escape>", lambda e: root.destroy())
|
||||
|
||||
root.mainloop()
|
||||
Reference in New Issue
Block a user