Compare commits

...

4 Commits

Author SHA1 Message Date
AG_CV_GAAIM
990de6345d Committed Changes 2025-06-10 10:24:36 -07:00
M1MacMini
e3b8320ad2 added finished test track and botsort yaml 2025-03-26 12:41:13 -04:00
M1MacMini
ce6b1c6705 Merge branch 'main' of https://git.factory.uga.edu/GEORGIA-AIM/CV_AG 2025-03-13 15:27:29 -04:00
M1MacMini
8a4f684cc1 added MQTT 2025-02-18 10:46:30 -05:00
6 changed files with 309 additions and 22 deletions

View File

@@ -1,12 +1,35 @@
import cv2
from ultralytics import YOLO
from collections import deque
import paho.mqtt.client as mqtt
from influxdb import InfluxDBClient
from influxdb_client import InfluxDBClient, Point, WriteOptions
import time
from datetime import datetime
# InfluxDB Configuration
INFLUX_URL = "http://localhost:8086"
INFLUX_TOKEN = "--k98NX5UQ2qBCGAO80lLc_-teD-AUtKNj4uQfz0M8WyjHt04AT9d0dr6w8pup93ukw6YcJxWURmo2v6CAP_2g=="
INFLUX_ORG = "GAAIM"
INFLUX_BUCKET = "AGVIGNETTE"
# Connect to InfluxDB
client = InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG)
write_api = client.write_api(write_options=WriteOptions(batch_size=1))
# MQTT Setup
MQTT_BROKER = "172.20.29.125"
MQTT_TOPIC = "fruit/classification"
mqtt_client = mqtt.Client()
mqtt_client.connect(MQTT_BROKER, 1883, 6000)
# Camera index (default camera is 0)
camera_index = 1
camera_index = 0
i = 0
# Load the YOLO model
model = YOLO(r"D:\AIM\lemon\runs\detect\train4\weights\best.pt") # Load custom model
model = YOLO(r"/Users/vel/Desktop/CvModel/CV_AG/runs/detect/train5/weights/best.pt") # Load custom model
# Initialize the camera
cap = cv2.VideoCapture(camera_index)
@@ -32,8 +55,9 @@ class_labels = {
id_tracked_classes = ["DefectiveLemon", "GoodLemon", "NotRipeLemon"]
# Parameters
HISTORY_LENGTH = 5 # Number of frames to consider for majority voting
CONFIRMATION_FRAMES = 5 # Frames needed to confirm a new label
HISTORY_LENGTH = 7 # Number of frames to consider for majority voting
CONFIRMATION_FRAMES = 7 # Frames needed to confirm a new label
lemon_time = 0
# Dictionary to track detection history and confirmed states
lemon_history = {} # Format: {ID: deque(maxlen=HISTORY_LENGTH)}
@@ -76,7 +100,7 @@ while cap.isOpened():
break
# Perform object tracking using BoT-SORT
results = model.track(source=frame, conf=0.5, tracker='botsort.yaml', show=False)
results = model.track(source=frame, conf=0.5, tracker='botsort.yaml', show=False, device = 'mps')
for result in results:
frame = result.orig_img # Current frame
@@ -109,6 +133,43 @@ while cap.isOpened():
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, display_text, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Create Decision Point at x = 600
if x1 > 100:
cv2.line(frame, (600, 0), (600, height), (255, 0, 0), 2)
# Create Decision Point at x = 670
if x1 > 100:
cv2.line(frame, (760, 0), (760, height), (255, 0, 0), 2)
cv2.putText(frame, "Decision Point", (630, height // 2),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
# Lock in the label once it crosses the decision point
if x1 > 700 and obj_id in lemon_states:
cv2.putText(frame, f"Locked: {lemon_states[obj_id]}", (x1, y1 - 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
else:
cv2.putText(frame, "Waiting to Lock", (x1, y1 - 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
if x1 > 600 and x1 < 780:
if final_label == "DefectiveLemon":
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
if time.time() - lemon_time > .3:
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
lemon_time = time.time()
i = i + 1
elif final_label == "NotRipeLemon":
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
if time.time() - lemon_time > .3:
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
lemon_time = time.time()
i = i + 1
elif final_label == "GoodLemon":
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
if time.time() - lemon_time > .3:
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
lemon_time = time.time()
i = i + 1
# Display the processed video stream
cv2.imshow("Live Detection", frame)

View File

@@ -1,7 +1,99 @@
import cv2
from ultralytics import YOLO
from collections import deque
import paho.mqtt.client as mqtt
from influxdb import InfluxDBClient
from influxdb_client import InfluxDBClient, Point, WriteOptions
import time
from datetime import datetime
import ssl
import os
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
import threading
# InfluxDB Configuration
INFLUX_URL = "http://localhost:8086"
INFLUX_TOKEN = "export INFLUX_TOKEN=duVTQHPpHqr6WmdYfpSStqm-pxnvZHs-W0-3lXDnk8Tn6PGt59MlnTSR6egjMWdYvmL_ZI6xt3YUzGVBZHvc7w=="
INFLUX_ORG = "GAAIM"
INFLUX_BUCKET = "AGVIGNETTE"
# Connect to InfluxDB
client = InfluxDBClient(url=INFLUX_URL, token=INFLUX_TOKEN, org=INFLUX_ORG)
write_api = client.write_api(write_options=WriteOptions(batch_size=1))
# MQTT Setup
MQTT_BROKER = "192.168.8.172"
MQTT_TOPIC = "fruit/classification"
def start_loading():
for i in range(101): # 0 to 100%
time.sleep(0.38) # 0.4s * 100 = 40 seconds
progress_var.set(i)
progress_bar.update_idletasks()
root.destroy()
# Set up full-screen window
root = tk.Tk()
root.title("Starting Up")
root.attributes('-fullscreen', True)
# Get screen size
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
# Load and resize the background image
try:
bg_img = Image.open("comicrobodog.png") # Replace with your image
bg_img = bg_img.resize((screen_width, screen_height), Image.ANTIALIAS)
bg_photo = ImageTk.PhotoImage(bg_img)
# Set as background using a label
bg_label = tk.Label(root, image=bg_photo)
bg_label.place(x=0, y=0, relwidth=1, relheight=1)
except Exception as e:
print("Error loading background image:", e)
root.configure(bg='black') # Fallback
# Overlay content frame (transparent background)
overlay = tk.Frame(root, bg='', padx=20, pady=20)
overlay.place(relx=0.5, rely=0.5, anchor='center')
# Message label
label = tk.Label(
overlay,
text="Computer Vision Vignette is Starting Up",
font=("Helvetica", 32, "bold"),
fg="white"
)
label.pack(pady=10)
# Progress bar
progress_var = tk.IntVar()
progress_bar = ttk.Progressbar(
overlay,
maximum=100,
variable=progress_var,
length=800
)
progress_bar.pack(pady=20)
# Start the progress in a thread
threading.Thread(target=start_loading, daemon=True).start()
# Close on ESC
root.bind("<Escape>", lambda e: root.destroy())
root.mainloop()
mqtt_client = mqtt.Client()
# Set up TLS/SSL for MQTT connection
mqtt_client.connect(MQTT_BROKER, 1883, 60000)
# Allow duplicate loading of OpenMP runtime
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
@@ -10,10 +102,15 @@ os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
yaml_path = "botsort.yaml"
# Camera index (default camera index, 1 indicates an external camera)
camera_index = 1
camera_index = 0
cap = cv2.VideoCapture(camera_index)
cap.set(cv2.CAP_PROP_FPS, 30)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Load the YOLO model
model = YOLO(r"D:\AIM\lemon\runs\detect\train4\weights\best.pt") # Load custom model
model = YOLO(r"/Users/ag_cv_gaaim/Desktop/CV_AG/runs/detect/train4/weights/best.pt") # Load custom model
# Define class labels
class_labels = {
@@ -34,9 +131,11 @@ GOOD_THRESHOLD = 0.7 # Threshold for "GoodLemon" and "NotRipeLemon" proportio
# State history for each target (used for smoothing), format: {ID: deque([...], maxlen=HISTORY_LENGTH)}
lemon_history = {}
lemon_send_history = []
# Set the display window to be resizable
cv2.namedWindow("Live Detection", cv2.WINDOW_NORMAL)
cv2.setWindowProperty("Live Detection", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
# Smoothing function:
# If the current detected label is not in smoothing_labels, clear the target's history and return the current label;
@@ -71,20 +170,47 @@ def get_smoothed_label(obj_id, current_label):
# Use streaming tracking mode to maintain tracker state
results = model.track(
source=camera_index, # Get video stream directly from the camera
conf=0.5,
conf=0.3,
tracker=yaml_path, # Use the YAML configuration file
persist=True, # Persist tracking (do not reset)
stream=True, # Stream processing, not frame-by-frame calling
show=False
show=False,
device = 'mps' #'cpu'
)
# Create variables to store the tracking results
num_defective = 0
num_good = 0
num_notripe = 0
last_classification = None
# Iterate over streaming tracking results
for result in results:
frame = result.orig_img # Current frame
frame = cv2.flip(frame, 1)
detections = result.boxes # Detection box information
# Create bounding box for classification area
cv2.rectangle(frame, (0, 370), (1000, 700), (0, 0, 0), -1) # Black background for text
cv2.rectangle(frame, (0, 0), (1000, 200), (0, 0, 0), -1) # Black background for text
cv2.rectangle(frame, (600, 200), (660, 370), (255, 255, 255), 2)
cv2.putText(frame, "Classification Area", (560, 190), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# Display the number of lemons in the top left corner
cv2.putText(frame, f"Defective: {num_defective}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
cv2.putText(frame, f"Good: {num_good}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"Not Ripe: {num_notripe}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 100, 80), 2)
cv2.putText(frame, f"Last Classification: {last_classification}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Total Lemons: {num_defective + num_good + num_notripe}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
for box in detections:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Detection box coordinates
# Adjust x-coordinates for the flipped frame
x1, x2 = width - x2, width - x1
obj_id = int(box.id) if box.id is not None else -1 # Tracking ID
class_id = int(box.cls) # Class ID
score = box.conf # Confidence
@@ -100,6 +226,41 @@ for result in results:
if final_label in smoothing_labels:
position = f"({x1}, {y1}, {x2}, {y2})"
print(f"ID: {obj_id}, Position: {position}, Label: {display_text}")
# Draw detection box and label with color based on classification
if final_label == "DefectiveLemon":
box_color = (100, 100, 255) # Red for defective
elif final_label == "NotRipeLemon":
box_color = (255, 100, 80) # Blue for unripe
elif final_label == "GoodLemon":
box_color = (0, 255, 0) # Green for good
else:
box_color = (255, 255, 255) # White for unknown or other classes
# Add background rectangle for text
text_size = cv2.getTextSize(display_text, cv2.FONT_HERSHEY_TRIPLEX, 0.6, 2)[0]
text_x, text_y = x1, y1 - 10
text_w, text_h = text_size[0], text_size[1]
cv2.rectangle(frame, (text_x, text_y - text_h - 5), (text_x + text_w, text_y + 5), (0, 0, 0), -1)
# Draw detection box and text
cv2.rectangle(frame, (x1, y1), (x2, y2), box_color, 2)
cv2.putText(frame, display_text, (text_x, text_y),
cv2.FONT_HERSHEY_TRIPLEX, 0.6, box_color, 2)
cv2.rectangle(frame, (500, 0), (1000, 170), (0, 0, 0), -1) # Black background for text
if x1 > 600 and x1 < 660 and y2 < 410 and y1 > 190 and obj_id not in lemon_send_history:
if final_label in ["DefectiveLemon", "NotRipeLemon", "GoodLemon"]:
mqtt_message = f"lemon_classification classification=\"{final_label}\" {int(time.time()*1e9)}"
lemon_send_history.append(obj_id)
mqtt_client.publish(MQTT_TOPIC, mqtt_message)
# Update Tracking Variables
if final_label == "DefectiveLemon":
num_defective += 1
elif final_label == "GoodLemon":
num_good += 1
elif final_label == "NotRipeLemon":
num_notripe += 1
last_classification = final_label
else:
# For other classes, display the current detection result directly and clear history (if exists)
if obj_id in lemon_history:
@@ -108,11 +269,6 @@ for result in results:
else:
display_text = label
# Draw detection box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, display_text, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Display the processed frame
cv2.imshow("Live Detection", frame)
@@ -123,3 +279,5 @@ for result in results:
cv2.destroyAllWindows()
print("Camera video processing complete. Program terminated.")

3
autostart.sh Executable file
View File

@@ -0,0 +1,3 @@
#!/usr/bin/env bash
source /Users/ag_cv_gaaim/Desktop/CV_AG/cvag/bin/activate
python3 /Users/ag_cv_gaaim/Desktop/CV_AG/Test_Track_updated.py

View File

@@ -4,18 +4,18 @@
# For documentation and examples see https://docs.ultralytics.com/modes/track/
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.25 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.4 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.7 # threshold for matching tracks
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.2 # threshold for the first association
track_low_thresh: 0.05 # threshold for the second association
new_track_thresh: 0.3 # threshold for init new track if the detection does not match any tracks
track_buffer: 50 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# BoT-SORT settings
gmc_method: sparseOptFlow # method of global motion compensation
# ReID model related thresh (not supported yet)
proximity_thresh: 0.5
appearance_thresh: 0.25
proximity_thresh: 0.6
appearance_thresh: 0.2
with_reid: False

BIN
comicrobodog.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

65
loadingscreen2.py Normal file
View File

@@ -0,0 +1,65 @@
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
import time
import threading
def start_loading():
for i in range(101): # 0 to 100%
time.sleep(0.4) # 0.4s * 100 = 40 seconds
progress_var.set(i)
progress_bar.update_idletasks()
root.destroy()
# Set up full-screen window
root = tk.Tk()
root.title("Starting Up")
root.attributes('-fullscreen', True)
# Get screen size
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
# Load and resize the background image
try:
bg_img = Image.open("comicrobodog.png") # Replace with your image
bg_img = bg_img.resize((screen_width, screen_height), Image.ANTIALIAS)
bg_photo = ImageTk.PhotoImage(bg_img)
# Set as background using a label
bg_label = tk.Label(root, image=bg_photo)
bg_label.place(x=0, y=0, relwidth=1, relheight=1)
except Exception as e:
print("Error loading background image:", e)
root.configure(bg='black') # Fallback
# Overlay content frame (transparent background)
overlay = tk.Frame(root, bg='', padx=20, pady=20)
overlay.place(relx=0.5, rely=0.5, anchor='center')
# Message label
label = tk.Label(
overlay,
text="Computer Vision Vignette is Starting Up",
font=("Helvetica", 32, "bold"),
fg="white"
)
label.pack(pady=10)
# Progress bar
progress_var = tk.IntVar()
progress_bar = ttk.Progressbar(
overlay,
maximum=100,
variable=progress_var,
length=800
)
progress_bar.pack(pady=20)
# Start the progress in a thread
threading.Thread(target=start_loading, daemon=True).start()
# Close on ESC
root.bind("<Escape>", lambda e: root.destroy())
root.mainloop()